收藏 分销(赏)

八年级数学上学期压轴题强化综合检测试题含答案.doc

上传人:a199****6536 文档编号:1716959 上传时间:2024-05-08 格式:DOC 页数:23 大小:969.54KB
下载 相关 举报
八年级数学上学期压轴题强化综合检测试题含答案.doc_第1页
第1页 / 共23页
八年级数学上学期压轴题强化综合检测试题含答案.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述
八年级数学上学期压轴题强化综合检测试题含答案 1.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O. (1)填空:∠BOC=   度; (2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由; (3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由. 2.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离.              3.已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 4.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、. (1)试判断、的数量关系,并说明理由; (2)延长交于点试求的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由. 5.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC. (1)如图1,若∠BAD=90°,AD=2,求CD的长度; (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC; (3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程. 6.如图,在等边中,,分别为,边上的点,,. (1)如图1,若点在边上,求证:; (2)如图2,连.若,求证:; (3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示). 7.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点. (1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标; (2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出; (3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长. 8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,. (1)如图1,若,求的度数. (2)如图1,求证:. (3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明). 【参考答案】 2.(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析 【分析】(1)证明△EAB≌△DBC(SAS),可得结论. (2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析 【分析】(1)证明△EAB≌△DBC(SAS),可得结论. (2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结论. (3)证明△AFO≌△OBR(SAS),推出OA=OR,可得结论. 【详解】解:(1)如图①中, ∵△ABC是等边三角形, ∴AB=BC,∠A=∠CBD=60°, 在△EAB和△DBC中, , ∴△EAB≌△DBC(SAS), ∴∠ABE=∠BCD, ∴∠BOD=∠BCD+∠CBE=∠ABE+∠CBE=∠CBA=60°, ∴∠BOC=180°-60°=120°. 故答案为:120. (2)相等. 理由:如图②中, ∵△FCO,△ACB都是等边三角形, ∴CF=CO,CA=CB,∠FCO=∠ACB=60°, ∴∠FCA=∠OCB, 在△FCA和△OCB中, , ∴△FCA≌△OCB(SAS), ∴AF=BO. (3)如图③中,结论:AO=2OG. 理由:延长OG到R,使得GR=GO,连接CR,BR. 在△CGO和△BGR中, , ∴△CGO≌△BGR(SAS), ∴CO=BR=OF,∠GCO=∠GBR,AF=BO, ∴CO∥BR, ∵△FCA≌△OCB, ∴∠AFC=∠BOC=120°, ∵∠CFO=∠COF=60°, ∴∠AFO=∠COF=60°, ∴AF∥CO, ∴AF∥BR, ∴∠AFO=∠RBO, 在△AFO和△OBR中, , ∴△AFO≌△OBR(SAS), ∴OA=OR, ∵OR=2OG, ∴OA=2OG. 【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 3.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=9 解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 4.(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明 解析:(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图, ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明. 5.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△ 解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°. 【详解】(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, ∴△ADB≌△AEC(SAS),∴BD=CE; (2)∵△ADB≌△AEC,∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°-∠ACE-∠CDF, 又∵∠CDF=∠BDA, ∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下: ∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE,∠ACE=∠DBA, ∴∠BFC=∠DAB=90°. 【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答. 6.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2 解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2; (2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC; (3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC. 如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC. 【详解】(1)∵,     ∴ 在Rt△BAD和Rt△BCD中, ∴Rt△BAD≌Rt△BCD(HL) ∴AD=DC=2       ∴DC=2      (2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∵ ∴ ∴ ∴ (3)(2)中结论不成立,应该是: 在CD延长线上找一点K,使得KC=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∴ ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∴ 【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形. 7.(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可 解析:(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF; (2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE; (3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-. (1) 证明:如图,连接, ,, ∵是等边三角形, ∴, ∵是等边三角形, ∴, , , , ,, , ; (2) 证明:如图,过点作交于点,交于点,过点作交于,交于点,连接, , , 和是等边三角形, ,, 是等边三角形, 由(1)中结论可知,, , ,, 四边形是平行四边形, , , , 为等边三角形,, , 平分, 是等边三角形, , , ,, ,即; (3) 如图,延长到点,使,连接,,,作,且使,连接,, ,, , ,,, , ,, , , , , 是等边三角形, , , ,, ,,, , ,, ,, , ,, , , , , ,, , , 又, , , . 【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键. 8.(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; 解析:(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; (3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论. (1) 解:如图1,过点作于点, , 等腰直角三角形, ,, . , ,. ,, ,, , ; (2) 解:整式的值不会变化. 理由如下: 如图2,过点作于点, , 等腰直角三角形, ,, , , , , , , , 当点沿轴负半轴向下运动时, , 整式的值不变,为; (3) . 证明:如图3,在上截取,连接, 是等边三角形, ,, 为等腰直角三角形, ,, , , , ,, , , . , ,, , , , , , , 即. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键. 9.(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证 解析:(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) ∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:延长AD至H,使DH=AD,连接BH, ∵EF=2AD, ∴AH=EF, 在△BDH和△CDA中, , ∴△BDH≌△CDA, ∴HB=AC=AF,∠BHD=∠CAD, ∴AC∥BH, ∴∠ABH+∠BAC=180°, ∵∠EAF+∠BAC=180°, ∴∠EAF=∠ABH, 在△ABH和△EAF中, , ∴△ABH≌△EAF, ∴∠AEF=∠ABH,EF=AH=2AD, (3) 结论:∠GAF-∠CAF=60°. 由(1)得,AD=EF,又点G为EF中点, ∴EG=AD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°, ∴△AEB是等边三角形, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF,∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°-∠CAF)=150°, ∴∠GAF-∠CAF=60°. . 【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服