资源描述
广州市中大附中八年级上册期末数学试卷
一、选择题
1、下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( )
A.戴口罩讲卫生 B.勤洗手勤通风
C.有症状早就医 D.少出门少聚集
2、科技不断发展,晶体管长度越造越短,长度只有0.000000006米的晶体管已经诞生,该数用科学记数法表示为( )米.
A. B. C. D.
3、下列计算正确的是( )
A. B. C. D.
4、函数中自变量的取值范围是( )
A. B. C. D.
5、下列各式从左到右的变形是因式分解的是( )
A.a2-ab=a(a-b) B.(a-3)(a+1)=a2-2a-3
C.ab+bc+d=b(a+c)+d D.6a2b=3ab·2a
6、下列等式中,正确的是( )
A. B. C. D.
7、如图,已知点A、D、C、F在同一条直线上,,,那么添加下列一个条件后,仍无法判定≌的是( )
A. B. C. D.
8、已知关于x的分式方程的解为非负数,则满足条件的所有正整数m的个数是( )
A.3 B.4 C.5 D.6
9、如图,△ABC是等边三角形,AD⊥BC于点D,点E在AC上,且AE=AD,则∠DEC的度数为( )
A.105° B.95° C.85° D.75°
二、填空题
10、如图,线段,,.点,为线段上两点.从下面4个条件中:①;②;③;④.选择一个条件,使得一定和全等 .则所有满足条件的序号是( )
A.①④ B.②③ C.①②④ D.②③④
11、当________时,分式的值为0.
12、在平面直角坐标系中,作点A(4,-3)关于x轴的对称点,再向右平移2个单位长度得到点,则点的坐标是__________.
13、已知,则的值是_________
14、已知,则=_____.
15、如图,在中,的平分线与的垂直平分线相交于点O,沿折叠,点C与点O恰好重合.则___________.
16、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.
17、若,,则__________.
18、如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走_____m时△CAP与△PQB全等.
三、解答题
19、分解因式:
(1)x2﹣9;
(2).
20、先化简,再求值:
(1),其中;
(2),其中.
21、如图,,点E在线段上,点F在延长线上,,求证:.
22、问题引入:
(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用表示);如图2,∠COB=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC= (用表示);
拓展研究:
(2)如图3,∠CBO=∠DBC,∠BCO=∠ECB,∠A=,求∠BOC的度数(用表示),并说明理由;
(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=,∠BCO=∠ECB,∠A=,请猜想∠BOC= (直接写出答案).
23、【阅读材料】若分式A与分式B的差等于它们的积,即,则称分式B是分式A的“关联分式”.
例如与,
解:,
,
是的“关联分式”.
(1)【解决问题】已知分式,则 ,的“关联分式”(填“是”或“不是”).
(2)和谐小组成员在求分式的“关联分式”时,用了以下方法:
解:设的“关联分式”为B,
则,
,
.
请你仿照和谐小组成员的方法求分式的“关联分式”.
(3)【拓展延伸】观察(1)(2)的结果,寻找规律直接写出分式的“关联分式”:________.
24、教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.
例如:分解因式
求代数式的最小值,.
当时,有最小值,最小值是,
根据阅读材料用配方法解决下列问题:
(1)分解因式:__________.
(2)当x为何值时,多项式有最大值?并求出这个最大值.
(3)若,求出a,b的值.
25、等边中,点、分别在边、上,且,连接、交于点.
(1)如图1,求的度数;
图1
(2)连接,若,求的值;
(3)如图2,若点为边的中点,连接,且,则的大小是___________.
图2
一、选择题
1、C
【解析】C
【分析】根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;
C、既是轴对称图形,又是中心对称图形,故此选项符合题意;
D、不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、D
【解析】D
【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.
【详解】解:由题意知:0.000000006=,
故选:D.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.
3、A
【解析】A
【分析】根据同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法运算法则进行计算即可.
【详解】解:A.,故A符合题意;
B.与不能合并,故B不符合题意;
C.,故C不符合题意;
D.,故D不符合题意;
故选:A.
【点睛】本题考查了同底数幂的乘法,积的乘方,合并同类项和同底数幂的除法,熟练掌握它们的运算法则是解题的关键.
4、B
【解析】B
【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.
【详解】解:∵x−1>0,
∴x>1.
故选:B.
【点睛】本题考查了函数自变量的取值范围,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.
5、A
【解析】A
【分析】根据因式分解的定义逐项判断即可.
【详解】解:A、把一个多项式转化成几个整式积的形式,是因式分解,故此选项符合题意;
B、(a-3)(a+1)=a2-2a-3是整式乘法,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项不符合题意;
D、没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项不符合题意.
故选:A.
【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
6、B
【解析】B
【分析】根据分式的基本性质逐一进行判断即可.
【详解】解:选项A:,故选项A错误;
选项B:,选项B正确;
选项C:,故选项C错误;
选项D:,故选项D错误;
故选:B.
【点睛】本题考查了分式的基本性质,属于基础题,计算过程中细心即可.
7、D
【解析】D
【分析】根据直角三角形全等的判定方法:HL,SAS,ASA,AAS,SSS,即可解答.
【详解】解:A.∵AD=CF,
∴AD+DC=CF+DC,
∴AC=DF,
∵∠B=∠E=90°,AB=DE,
∴Rt△ABC≌Rt△DEF(HL),
故A不符合题意;
B.∵∠B=∠E=90°,AB=DE,BC=EF,
∴△ABC≌△DEF(SAS),
故B不符合题意;
C.∵BC∥EF,
∴∠BCA=∠F,
∵∠B=∠E=90°,AB=DE,
∴△ABC≌△DEF(AAS),
故C不符合题意;
D.∵∠B=∠E=90°,AB=DE,∠A=∠F,
∴△ABC与△DEF不一定全等,
故D符合题意;
故选:D.
【点睛】本题考查了全等三角形的判定,熟练掌握直角三角形全等的判定方法是解题的关键.
8、B
【解析】B
【分析】方程两边同乘最简公分母将分式方程化为整式方程解得x=;再根据分式方程的解为非负数,列出不等式组,解得m≤5且m≠3,即可求出满足条件的所有正整数m.
【详解】解:由2﹣,
得2(x﹣1)+m=3,
解得x=,
∵分式方程的解为非负数,
∴≥0,
∵x﹣1≠0,
即≠1,
∴,
解得m≤5且m≠3,
∴满足条件的所有正整数m为1,2,4,5,共4个.
故选:B.
【点睛】此题考查了分式方程的解和不等式组的解,解题的关键是分式方程化成整式方程,根据条件列出不等式组求解.
9、A
【解析】A
【分析】先利用等边三角形的性质、等腰三角形三线合一的性质得出,再利用AE=AD得出,最后利用三角形外角的性质即可求出∠DEC的度数.
【详解】解:∵△ABC是等边三角形,AD⊥BC,
∴,
∵AE=AD,
∴,
∴,
∴,
故选A.
【点睛】本题考查等边三角形的性质、等腰三角形的性质、三角形内角和定理以及外角的性质,利用等腰三角形三线合一的性质得出是解题的关键.
二、填空题
10、D
【解析】D
【分析】利用全等三角形的判定定理对①②③④进行逐一判断即可.
【详解】解:①结合已知条件,判定条件为SSA.由于CE=5,AC=4,CE<AC,∴E点在线段AB上有两个符合条件的点,同理F也有两个符合条件的点,由图可知不一定和全等,错误;
②结合已知条件,由SAS可以判定和全等,正确;
③由于CE=7,AC=4, CE>AC,∴线段AB上只有一个符合条件的点E,同理只有一个符合条件的点F,如图,此时一定和全等.故正确;
④∵,∴∠AEC=∠DFB,再结合已知条件,根据AAS,可以判定和全等.正确.
故选D.
【点睛】本题考查全等三角形的判定,掌握判定定理是关键.
11、1
【分析】由分式的值为0,可得,再解方程与不等式即可.
【详解】解: 分式的值为0,
由①得:
由②得:
综上:
故答案为:
【点睛】本题考查的是分式的值为0的条件,掌握“分式的值为0的条件:分子为0,分母不为0”是解题的关键.
12、A
【解析】
【分析】根据点关于x轴对称的坐标规律“横坐标不变,纵坐标互为相反数”得到,再根据点平移坐标规律“右加左减,上加下减”得到即可.
【详解】解:点A(4,-3)关于x轴的对称点的坐标为(4,3),再将向右平移2个单位长度得到点的坐标为(6,3),
故答案为:(6,3).
【点睛】本题考查坐标与图形变换-轴对称和平移,熟练掌握点关于轴对称和平移的坐标变换规律是解答的关键.
13、
【分析】由,,利用两个等式之间的平方关系得出;再根据已知条件将各分母因式分解,通分,代入已知条件即可.
【详解】由平方得:,
且,则:,
由得:,
∴
同理可得:,,
∴原式=
=
=
=
=
故答案为:.
【点睛】本题主要考查了分式的化简、求值问题;解题的关键是根据已知条件的结构特点,灵活运用有关公式将所给的代数式恒等变形,准确化简.
14、
【分析】先根据幂的乘方求出,再根据同底数幂的除法的逆运算法则求解即可.
【详解】解:∵,
∴,
∴,
故答案为:.
【点睛】本题主要考查了幂的乘方,同底数幂除法的逆运算,熟知相关计算法则是解题的关键.
15、##52度
【分析】连接OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BA
【解析】##52度
【分析】连接OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后证△AOB≌△AOC(SAS),得出OB=OC,∠OCB=∠OBC,再根据等边对等角求出∠OCB=∠OBC,根据折叠的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得∠OEC,即可求解.
【详解】解:如图,连接OC,
∵∠BAC=52°,AO为∠BAC的平分线,
∴∠BAO=∠BAC=×52°=26°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-52°)=64°,
∵点O在AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=26°,
∴∠OBC=∠ABC-∠ABO=64°-26°=38°,
∵AO为∠BAC的平分线,
∴∠BAO=∠CAO,
∵AB=AC,AO=AO,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴∠OCB=∠OBC=38°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,∠OEF=∠CEF,
∴∠COE=∠OCB=38°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-38°-38°=104°,
∴∠OEF=∠OEC=52°,
故答案为:52°.
【点睛】本题考查了翻折变换的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
16、720°##720度
【分析】根据多边形内角和可直接进行求解.
【详解】解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关
【解析】720°##720度
【分析】根据多边形内角和可直接进行求解.
【详解】解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.
17、##
【分析】根据完全平方公式变形,代入求解即可.
【详解】解:∵,
∴,
故答案为:.
【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键.
【解析】##
【分析】根据完全平方公式变形,代入求解即可.
【详解】解:∵,
∴,
故答案为:.
【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键.
18、1或3
【分析】分两种情况:①若BP=AC=4,AP=BQ=8,则△CAP≌△PBQ;②若BP=AP=6,AC=BQ=4,则△ACP≌△BQP即可得出结果.
【详解】解:设P点每分钟走xm.
①若B
【解析】1或3
【分析】分两种情况:①若BP=AC=4,AP=BQ=8,则△CAP≌△PBQ;②若BP=AP=6,AC=BQ=4,则△ACP≌△BQP即可得出结果.
【详解】解:设P点每分钟走xm.
①若BP=AC=4,此时AP=BQ=8,△CAP≌△PBQ,
∴t==4,
∴x==1.
②若BP=AP=6,AC=BQ=4,△ACP≌△BQP,
∴t==2,
∴x==3,
故答案为1或2、
【点睛】本题考查了全等三角形的判定,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
三、解答题
19、(1)
(2)
【分析】(1)利用平方差公式分解即可.
(2)先提公因式,利用完全平方公式继续分解.
(1)解:原式=.
(2)解:原式=.
【点睛】本题考查了提公因式法和公式法及十字相乘法的综合运
【解析】(1)
(2)
【分析】(1)利用平方差公式分解即可.
(2)先提公因式,利用完全平方公式继续分解.
(1)解:原式=.
(2)解:原式=.
【点睛】本题考查了提公因式法和公式法及十字相乘法的综合运用,解题的关键是一定要注意如果多项式的各项含有公因式,必须先提取公因式.
20、(1),-4043
(2),
【分析】(1)按照整式的乘法运算顺序进行计算即可化简,
(2)先将分式的分子分母进行因式分解,再根据分式的运算法则计算约分即可化简.
(1)
解:原式=
=
当时,原式
【解析】(1),-4043
(2),
【分析】(1)按照整式的乘法运算顺序进行计算即可化简,
(2)先将分式的分子分母进行因式分解,再根据分式的运算法则计算约分即可化简.
(1)
解:原式=
=
当时,原式=1-2×2022
(2)
原式
当时,原式
【点睛】本题主要考查了整式和分式的化简求值,熟练的掌握整式和分式的运算法则和运算顺序以及乘法公式是解题的关键.
21、证明见解析
【分析】由全等三角形的性质证明结合,证明从而可得结论.
【详解】解: ,
,
【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键.
【解析】证明见解析
【分析】由全等三角形的性质证明结合,证明从而可得结论.
【详解】解: ,
,
【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键.
22、(1),
(2),理由见解析
(3)
【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得
【解析】(1),
(2),理由见解析
(3)
【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得∠BOC=90°+α;如图2,根据三角形的内角和等于180°列式整理即可得∠BOC=120°+α;
(2)如图3,根据三角形的内角和等于180°列式整理即可得∠BOC=120°﹣α;
(3)根据三角形的内角和等于180°列式整理即可得∠BOC=.
(1)
如图1,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α;
如图2,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A=120°+α;
(2)
如图3,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=120°﹣α;
(3)
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(∠A+180°)
=.
【点睛】此题考查了三角形内角和定理,角平分线的性质,解题关键在于掌握内角和定理,以及几何图形中角度的计算.
23、(1)是
(2)
(3)
【分析】(1)根据关联分式的定义判断;
(2)仿照和谐小组成员的方法,设的关联分式是N,则,求出N即可;
(3)根据(1)(2)的结果找出规律,再利用规律求解.
(1)
解
【解析】(1)是
(2)
(3)
【分析】(1)根据关联分式的定义判断;
(2)仿照和谐小组成员的方法,设的关联分式是N,则,求出N即可;
(3)根据(1)(2)的结果找出规律,再利用规律求解.
(1)
解:∵,
,
∴ 是的“关联分式”.
故答案为:是;
(2)
解:设的关联分式是N,则:
∴
∴
∴;
(3)
解:由(1)(2)知:的关联分式为:.
故答案为:.
【点睛】本题考查用新定义解决数学问题,熟练掌握分式混合运算法则是求解本题的基础.
24、(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1
【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;
(2)根据题目中的例子,先将所求式子变形,然后即可得到当x
【解析】(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1
【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;
(2)根据题目中的例子,先将所求式子变形,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值;
(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值.
【详解】解:(1)x2-4x-5
=(x-2)2-9
=(x-2+3)(x-2-3)
=(x+1)(x-5),
故答案为:(x+1)(x-5);
(2)∵-2x2-4x+3=-2(x+1)2+5,
∴当x=-1时,多项式-2x-4x+3有最大值,这个最大值是5;
(3)∵,
∴,
∴,
∴,
∴a-2b=0,b-1=0,
∴a=2,b=1.
【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答.
25、(1);(2);(3)
【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出.
(2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在中利
【解析】(1);(2);(3)
【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出.
(2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.
(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.
【详解】(1)∵是等边三角形,
∴,,
在和中,
,,,
∴,
∴,
∴,
∴.
(2)在上取点,使.
由(1)知,
又,
∴.
在和中,
∵,,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴.
(3).
提示:目测即得答案.详细理由如下:
由(1)知.延长至,使为等边三角形.
延长交于.
∵ ,
∴,
在和中,
,
∴,
∴.
∴,
∴.
∴,
在和中,
,
∴,
∴.
∵,,
∴,
∵
∴为等边三角形,
∴
∴.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.
展开阅读全文