资源描述
2023年人教版中学七7年级下册数学期末解答题试题(及答案)
一、解答题
1.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号)
(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.
2.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
3.如图,用两个边长为15的小正方形拼成一个大的正方形,
(1)求大正方形的边长?
(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?
4.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
5.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二、解答题
6.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
7.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
8.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;
(3)如图3,若点是下方一点,平分, 平分,已知,求的度数.
9.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.
(1)若点P,F,G都在点E的右侧,求的度数;
(2)若点P,F,G都在点E的右侧,,求的度数;
(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.
10.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
三、解答题
11.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
12.如图,已知是直线间的一点,于点交于点.
(1)求的度数;
(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒.
①当时,求的度数;
②当时,求t的值.
13.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.
(1)如图①,若平分,求的度数;
(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
14.已知,交AC于点E,交AB于点F.
(1)如图1,若点D在边BC上,
①补全图形;
②求证:.
(2)点G是线段AC上的一点,连接FG,DG.
①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明;
②若点G是线段EC上的一点,请你直接写出,,之间的数量关系.
15.已知:和同一平面内的点.
(1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;
(2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由.
(3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形.
四、解答题
16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
17.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且
(1)直接写出的面积 ;
(2)如图②,若,作的平分线交于,交于,试说明;
(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.
18.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
19.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
20.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
【参考答案】
一、解答题
1.(1)<;(2)不能,理由见解析
【分析】
(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;
(2)设裁出的长方形的长为,宽为,由题意得关于
解析:(1)<;(2)不能,理由见解析
【分析】
(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;
(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.
【详解】
解:(1)圆的面积与正方形的面积都是,
圆的半径为,正方形的边长为,
,,
,
,
.
(2)不能裁出长和宽之比为的长方形,理由如下:
设裁出的长方形的长为,宽为,由题意得:
,
解得或(不合题意,舍去),
长为,宽为,
正方形的面积为,
正方形的边长为,
,
不能裁出长和宽之比为的长方形.
【点睛】
本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.
2.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
3.(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正
解析:(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正方形的边长是: =30;
(2)设长方形纸片的长为4xcm,宽为3xcm,
则4x•3x=720,
解得:x= ,
4x= = >30,
所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.
故答案为(1)30;(2)不能.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
4.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
5.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二、解答题
6.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
7.(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图
解析:(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】
解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
8.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
解析:(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴,
(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.
9.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G
解析:(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,
①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=x,
∵∠ECD=80°,
∴x+x+x+x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,
∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
10.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,
解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;
(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;
(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.
【详解】
解:(1)如图1中,过点E作EG∥AB,
则∠BEG=∠ABE,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG=∠CDE,
所以∠BEG+∠DEG=∠ABE+∠CDE,
即∠BED=∠ABE+∠CDE;
(2)图2中,因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BED=∠ABE+∠CDE,
∠BFD=∠ABF+∠CDF,
所以∠BED=2∠BFD.
(3)∠BED=360°-2∠BFD.
图3中,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG+∠CDE=180°,
所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BFD=∠ABF+∠CDF,
所以∠BED=360°-2∠BFD.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
三、解答题
11.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
12.(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间
解析:(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;
②根据题意可知,当时,分三种情况,
Ⅰ射线由逆时针转动,,根据题意可知,,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;
Ⅱ射线垂直时,再顺时针向运动时,,根据题意可知,,,,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;
Ⅲ射线垂直时,再顺时针向运动时,,根据题意可知,,,根据(1)中结论,,,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论.
【详解】
解:(1)延长与相交于点,
如图1,
,
,
,
;
(2)①Ⅰ如图2,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
Ⅱ如图3所示,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
的度数为或;
②Ⅰ当由运动如图4时,
与相交于点,
根据题意可知,经过秒,
,,
,
,
又,
,
解得(秒;
Ⅱ当运动到,再由运动到如图5时,
与相交于点,
根据题意可知,经过秒,
,
,
,,
运动的度数可得,,
解得;
Ⅲ当由运动如图6时,,
根据题意可知,经过秒,
,,
,,
,,
又,
,
,
解得(秒),
当的值为秒或或秒时,.
【点睛】
本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.
13.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵平分,,
∴,
∴,
∴,
∴;
(2)①∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴;
②∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴.
【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
14.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠
解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF
【分析】
(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A;
(2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【详解】
解:(1)①如图,
②∵DE∥AB,DF∥AC,
∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,
∴∠EDF=∠A;
(2)①∠AFG+∠EDG=∠DGF.
如图2所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;
②∠AFG-∠EDG=∠DGF.
如图所示,过G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
【点睛】
本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.
15.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可
解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;
(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.
【详解】
(1)由题意,补全图形如下:
,理由如下:
,
,
,
,
;
(2),理由如下:
如图,延长BA交DF于点O,
,
,
,
,
;
(3)由题意,有以下两种情况:
①如图3-1,,理由如下:
,
,
,
,
,
由对顶角相等得:,
;
②如图3-2,,理由如下:
,
,
,
,
.
【点睛】
本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
四、解答题
16.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
17.(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠
解析:(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.
(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.
详解:(1)S△BCD=CD•OC=×3×2=3.
(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.
(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC
∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA
∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.
点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.
18.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为360°.
19.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA
展开阅读全文