资源描述
2023年人教版七7年级下册数学期末测试(及答案)
一、选择题
1.的平方根是()
A.9 B.9和﹣9 C.3 D.3和﹣3
2.下列现象中,( )是平移
A.“天问”探测器绕火星运动 B.篮球在空中飞行
C.电梯的上下移动 D.将一张纸对折
3.平面直角坐标系中有一点,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在同一平面内,下列命题是假命题的是( )
A.过直线外一点有且只有一条直线与已知直线相交
B.已知,,三条直线,若,,则
C.过直线外一点有且只有一条直线与已知直线垂直
D.若三条直线两两相交,则它们有一个或三个交点
5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180°
6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )
A. B. C.2 D.3
7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( )
A.45° B.40° C.55° D.35°
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2021的坐标为( )
A.(-3,3) B.(-2,2) C.(3,-1) D.(2,4)
九、填空题
9.49的算术平方根是___.
十、填空题
10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______
十一、填空题
11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________.
十二、填空题
12.如图,,设,那么,,的关系式______.
十三、填空题
13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____.
十四、填空题
14.阅读下列解题过程:
计算:
解:设①
则②
由②-①得,
运用所学到的方法计算:______________.
十五、填空题
15.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________.
十六、填空题
16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为__________.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中的x值:
(1)(x﹣1)2=4;
(2)(2x+1)3+64=0;
(3)x3﹣3=.
十九、解答题
19.如图.试问、、有什么关系?
解:,理由如下:
过点作
则______( )
又∵,
∴____________( )
∴____________( )
∴( )
即____________
二十、解答题
20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.
(1)分别写出点A、B、C的坐标;
(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A1B1C1,其中点A的对应点是A1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;
(3)求ABC的面积.
二十一、解答题
21.解下列问题:
(1)已知;求的值.
(2)已知的小数部分为的整数部分为,求的值.
二十二、解答题
22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).
(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;
(2)迁移应用:
请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.
①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.
②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小.
二十三、解答题
23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且.
(1)求、的值;
(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;
(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?
二十四、解答题
24.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
二十五、解答题
25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=(∠ACD-∠ABD)
∴∠A1=______°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
【参考答案】
一、选择题
1.D
解析:D
【分析】
先化简,再根据平方根的地红衣求解.
【详解】
解:∵=9,
∴的平方根是,
故选D.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
2.C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不
解析:C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意;
B. 篮球在空中飞行不是平移,故此选项不符合题意;
C. 电梯的上下移动是平移,故此选项符合题意;
D. 将一张纸对折不是平移,故此选项不符合题意
故选:C.
【点睛】
本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.
3.D
【分析】
根据平面直角坐标系内各象限内点的坐标符号特征判定即可.
【详解】
解:根据平面直角坐标系内各象限内点的坐标符号特征可知:
在第四象限
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.
4.A
【分析】
根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.
【详解】
解:、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题;
、在同一平面内,已知,,三条直线,若,,则,是真命题;
、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题;
、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题;
故选:.
【点睛】
本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.
【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.
6.A
【分析】
根据计算程序图计算即可.
【详解】
解:∵当x=64时,,,2是有理数,
∴当x=2时,算术平方根为是无理数,
∴y=,
故选:A.
【点睛】
此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=∠DFE=×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.D
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(2,4),
∴
解析:D
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(2,4),
∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505……1,
∴点A2021的坐标与A1的坐标相同,为(2,4).
故选:D.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
九、填空题
9.7
【详解】
试题分析:因为,所以49的算术平方根是7.
故答案为7.
考点:算术平方根的定义.
解析:7
【详解】
试题分析:因为,所以49的算术平方根是7.
故答案为7.
考点:算术平方根的定义.
十、填空题
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
十一、填空题
11.10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即
解析:10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.
【详解】
解:当高AD在△ABC的内部时.
∵∠B=40°,∠C=60°,
∴∠BAC=180°-40°-60°=80°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=40°,
∵AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°-∠B=50°,
∴∠EAD=∠BAD-∠BAE=50°-40°=10°.
当高AD在△ABC的外部时.
同法可得∠EAD=10°+30°=40°
故答案为10°或40°.
【点睛】
此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数
十二、填空题
12.【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平
解析:
【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;
十三、填空题
13.30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º
解析:30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º,
∴∠DNM=∠BMN=75º,
∵将矩形ABCD沿MN折叠,使点B与点D重合,
∴∠BMN=∠NMD=75º,
∴∠BMD=150º,
∴∠AMD=30º,
故答案为:30º.
【点睛】
本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.
十四、填空题
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:.
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.
十五、填空题
15.2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离
解析:2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离为:2
故答案为:2
【点睛】
本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.
十六、填空题
16.(-19,8)
【分析】
求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.
【详解】
解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,
解析:(-19,8)
【分析】
求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.
【详解】
解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,
∵−2=1−3×1,−5=1−3×2,−8=1−3×3,
∴A3n横坐标为1−3n,
∴A18横坐标为:1−3×6=−17,
∴A18(−17,6),
把A18向左平移2个单位,再向上平移2个单位得到A20,
∴A20(−19,8).
故答案为:(−19,8).
【点睛】
本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
十七、解答题
17.(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式=
解析:(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式= -6+2+1+=.
故答案为:(1)-5;(2) .
【点睛】
本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.
十八、解答题
18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(
解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(1)开方得:x﹣1=2或x﹣1=﹣2,
解得:x=3或x=﹣1;
(2)方程整理得:(2x+1)3=﹣64,
开立方得:2x+1=﹣4,
解得:x=﹣2.5;
(3)方程整理得:x3=,
开立方得:x=1.5.
【点睛】
本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.
十九、解答题
19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,
解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,理由如下:
过点作,
则∠1(两直线平行,内错角相等),
又∵,,
∴DE∥CF(平行于同一条直线的两直线平行),
∴∠2(两直线平行,内错角相等)
∴(等量代换)
即∠BCE,
故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE.
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标
解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.
【详解】
解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);
(2)如图,△A1B1C1为所作,
∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,
∴A1(-3+6,4-4)即(3,0)
同理得到B1(1,﹣2),C1(4,﹣4);
(3)△ABC的面积=3×4﹣×2×3﹣×4×1﹣×2×2=5.
【点睛】
本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.(1);(2).
【分析】
(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;
(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.
【详解】
原式
.
解析:(1);(2).
【分析】
(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;
(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.
【详解】
原式
.
【点睛】
此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.
二十二、解答题
22.(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②
解析:(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.
【详解】
解:设正方形边长为a,
∵a2=2,
∴a=,
故答案为:,;
(2)解:①裁剪后拼得的大正方形如图所示:
②设拼成的大正方形的边长为b,
∴b2=5,
∴b=±,
在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,
∴比较大小:.
【点睛】
本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.
二十三、解答题
23.(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;
(3)根据灯B的
解析:(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;
(3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论.
【详解】
解:(1).
又,.
,;
(2)设灯转动时间为秒,
如图,作,而
,,
,
,
,
,
(3)设灯转动秒,两灯的光束互相平行.
依题意得
①当时,
两河岸平行,所以
两光线平行,所以
所以,
即:,
解得;
②当时,
两光束平行,所以
两河岸平行,所以
所以,,
解得;
③当时,图大概如①所示
,
解得(不合题意)
综上所述,当秒或82.5秒时,两灯的光束互相平行.
【点睛】
这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.
二十四、解答题
24.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
二十五、解答题
25.(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠An,
故答案为:∠A=2∠An.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A1的值为定值正确.
∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1=∠A1CD-∠A1BD=
∠BAC,
∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,
∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,
∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,
∴∠Q+∠A1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.
展开阅读全文