1、人教版八年级上学期压轴题数学质量检测试题带解析(一)1如图,在等边ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O(1)填空:BOC 度;(2)如图,以CO为边作等边OCF,AF与BO相等吗?并说明理由;(3)如图,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由2请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,直线AP
2、平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 3如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G
3、,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由4如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)5
4、已知,(1)若,作,点在内如图1,延长交于点,若,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数6以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由7如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作DBO=ABO,点H为y轴上的点,CAH=BAO,BD交y轴于点E,直线DO交AC于点C(1)证明:ABE为等边三角形;(2)若CDAB于点F,求线段CD的长
5、;(3)动点P从A出发,沿AOB路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿BOA路线运动,速度为2个单位长度每秒,到A点处停止运动两点同时开始运动,都要到达相应的终点才能停止在某时刻,作PMCD于点M,QNCD于点N问两动点运动多长时间时OPM与OQN全等?8已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长AB交DE于M,DB=,如图3,则BM=_(直接写出结果)【参考答案】2(1)120;(2)相等,理由见解析;(
6、3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结解析:(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结论(3)证明AFOOBR(SAS),推出OA=OR,可得结论【详解】解:(1)如图中,ABC是等边三角形,AB=BC,A=CBD=60,在EAB和DBC中,EABDBC(SAS),ABE=BCD,BOD=BCD+CBE=ABE+CBE=CBA=60,BOC=180-60=120故答案为
7、:120(2)相等理由:如图中,FCO,ACB都是等边三角形,CF=CO,CA=CB,FCO=ACB=60,FCA=OCB,在FCA和OCB中,FCAOCB(SAS),AF=BO(3)如图中,结论:AO=2OG理由:延长OG到R,使得GR=GO,连接CR,BR在CGO和BGR中,CGOBGR(SAS),CO=BR=OF,GCO=GBR,AF=BO,COBR,FCAOCB,AFC=BOC=120,CFO=COF=60,AFO=COF=60,AFCO,AFBR,AFO=RBO,在AFO和OBR中,AFOOBR(SAS),OA=OR,OR=2OG,OA=2OG【点睛】本题属于三角形综合题,考查了等边
8、三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方解析:(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(18
9、0-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:
10、如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-
11、CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考
12、常考题型4(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证解析:(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3
13、)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键5(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM
14、=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DCB=60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN
15、 =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,
16、在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题6(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证解析:(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三
17、角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据7(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角
18、三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BFC=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=A
19、C,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS
20、”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答8(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE=BEA=EAB=60,进而得出AOF=30,利用含30角的直角三角形的性质得到AF、OF的长再证明ACF=AOF=30,D=30,同理得出CF、DF的
21、长,进而可得出结论(3)设运动的时间为t秒然后分四种情况讨论:当点P、Q分别在y轴、x轴上时,;当点P、Q都在y轴上时,;当点P在x轴上,Q在y轴且二者都没有提前停止时,;当点P在x轴上,Q在y轴且点Q提前停止时,列方程求解即可【详解】(1)在AOB与EOB中,AOB=EOB,OB=OB,EBO=ABO,AOBEOB (ASA),AO=EO=3,BE=AB=6,AE=BE=AB=6,ABE为等边三角形(2)由(1)知ABE=BEA=EAB=60CDAB,AOF=30,AF=在RtAOF中,OF=CAH=BAO =60,CAF =60,ACF=AOF=30,AO=AC又CDAB,CF=AB=6,
22、AF=,BF=在RtBDF中,DBF =60,D=30,BD=由勾股定理得:DF=,CD=(3)设运动的时间为t秒当点P、Q分别在y轴、x轴上时,PO=QO得:,解得:(秒);当点P、Q都在y轴上时,PO=QO得:,解得(秒);当点P在x轴上,Q在y轴且二者都没有提前停止时,则PO=QO,得:,解得:,不合题意,舍去当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒)综上所述:当两动点运动时间为、6秒时,OPM与OQN全等【点睛】本题考查了全等三角形的判定、含30角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质正确分类讨论是解题的关键9(1)见解析(2)见解析(3)【分析】
23、(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB,BC=BE,ABD=CBE=60,ABD+ABC=CBE+ABC,DBC=ABE,A
24、BEDBC(SAS),AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH / AD交AM的延长线于H,H=BAD=60,BCE是等边三角形,BC=BE,CBE=60,ABC=90,EBH=90CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键