收藏 分销(赏)

人教版中学七7年级下册数学期末学业水平卷附答案.doc

上传人:快乐****生活 文档编号:1732322 上传时间:2024-05-08 格式:DOC 页数:24 大小:661.54KB 下载积分:10 金币
下载 相关 举报
人教版中学七7年级下册数学期末学业水平卷附答案.doc_第1页
第1页 / 共24页
人教版中学七7年级下册数学期末学业水平卷附答案.doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
人教版中学七7年级下册数学期末学业水平卷附答案 一、选择题 1.下列各式中,正确的是() A.=±2 B.±=4 C.=-4 D.=-2 2.下列图案可以由部分图案平移得到的是( ) A. B. C. D. 3.若点在第四象限内,则点的坐标可能是( ) A. B. C. D. 4.下列命题中: ①若,则点在原点处; ②点一定在第四象限 ③已知点与点,m,n均不为0,则直线平行x轴; ④已知点A(2,-3),轴,且,则B点的坐标为(2,2). 以上命题是真命题的有( ) A.1个 B.2个 C.3个 D.4个 5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( ) A. B. C.或 D.或 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点,,则(  ) A. B. C. D. 8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( ) A. B. C. D. 九、填空题 9.比较大小,请在横线上填“>”或“<”或“=”________. 十、填空题 10.平面直角坐标系中,点关于y轴的对称点的坐标为________. 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______. 十三、填空题 13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度. 十四、填空题 14.已知,若且是整数,则m=______ . 十五、填空题 15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____. 十六、填空题 16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________. 十七、解答题 17.(1) (2) (3) 十八、解答题 18.求下列各式中x的值: (1)9x2-25=0; (2)(x+3)3+27=0. 十九、解答题 19.完成下面推理过程,并在括号中填写推理依据: 如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3,试说明:AD平分∠BAC. 证明:∵AD⊥BC,EG⊥BC ∴∠ADC=   =90°(垂直定义) ∴   ∥EG(同位角相等,两直线平行) ∴∠1=   (    ) ∠2=∠3(    ) 又∵∠3=∠E(已知) ∴   =∠2     ∴AD平分∠BAC    二十、解答题 20.与在平面直角坐标系中的位置如图. (1)分别写出下列各点的坐标: ; ; ; (2)说明由经过怎样的平移得到?答:_______________. (3)若点是内部一点,则平移后内的对应点的坐标为_________; (4)求的面积. 二十一、解答题 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是   . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.直线AB∥CD,点P为平面内一点,连接AP,CP. (1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数; (2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由; (3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由. 二十四、解答题 24.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1). ①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法: ②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线. (2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据). 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系  ; ②如图4,  . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.D 解析:D 【分析】 依据算术平方根、平方根、立方根的性质求解即可. 【详解】 解:A、,故选项错误; B、,故选项错误; C、,故选项错误; D、,故选项正确; 故选D. 【点睛】 本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键. 2.C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大 解析:C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大小发生了变化,不是平移,选项错误,不符合题意. 故选:C. 【点睛】 本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变. 3.B 【分析】 根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案. 【详解】 根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求, 故选:B. 【点睛】 本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键. 4.B 【分析】 利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断. 【详解】 解:若,则或,所以点坐标轴上,所以①为假命题; ,点一定在第四象限,所以②为真命题; 已知点与点,,均不为0,则直线平行轴,所以③为真命题; 已知点,轴,且,则点的坐标为或,所以④为假命题. 故选:B. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.D 【分析】 分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解. 【详解】 解:当点D在线段AB上时,如图1所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE+∠CDE=84°+20°=104°; 当点D在线段AB的延长线上时,如图2所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE-∠CDE=84°-20°=64°. 综上所述:∠ADC=104°或64°. 故选:D. 【点睛】 本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.C 【分析】 由AB//CO得出∠BAO=∠AOC,即可得出∠BOD. 【详解】 解:, 故选:. 【点睛】 本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题. 8.A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3 解析:A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环, 2021÷6=366……5, 第2021次碰到长方形的边的点的坐标为(7,4), 故选:A. 【点睛】 本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答. 九、填空题 9.= 【分析】 先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】 解:∵, ∴= 故答案为:= 【点睛】 本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌 解析:= 【分析】 先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】 解:∵, ∴= 故答案为:= 【点睛】 本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键. 十、填空题 10.(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴 解析:(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变. 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, 解析:65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, ∴∠3=∠2﹣∠4=115°﹣50°=65°. 故答案为:65°. 【点睛】 此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键. 十三、填空题 13.【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 解析:【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 十四、填空题 14.2 【分析】 根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案. 【详解】 解:∵是整数, ∴m是整数, ∵, ∴m2≤4, ∴−2≤m≤2, ∴m=−2,−1 解析:2 【分析】 根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案. 【详解】 解:∵是整数, ∴m是整数, ∵, ∴m2≤4, ∴−2≤m≤2, ∴m=−2,−1,0,1,2 当m=±2或−1时,是整数, ∵ ∴m=2 故答案为:2. 【点睛】 本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型. 十五、填空题 15.(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0), 解析:(0,4)或(0,-4). 【分析】 设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答. 【详解】 解:设△ABC边AB上的高为h, ∵A(1,0),B(2,0), ∴AB=2-1=1, ∴△ABC的面积=×1•h=2, 解得h=4, 点C在y轴正半轴时,点C为(0,4), 点C在y轴负半轴时,点C为(0,-4), 所以,点C的坐标为(0,4)或(0,-4). 故答案为:(0,4)或(0,-4). 【点睛】 本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键. 十六、填空题 16.(1617,2) 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,- 解析:(1617,2) 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可. 【详解】 解:前五次运动横坐标分别为:1,2,2,4,4, 第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4, … ∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4, 前五次运动纵坐标分别2,0,-2,-2,0, 第6到10次运动纵坐标分别为2,0,-2,-2,0, … ∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0, ∵2021÷5=404…1, ∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2, ∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2). 故答案为:(1617,2). 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 十七、解答题 17.(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实 解析:(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实数运算,关键是掌握数的开方,正确化简各数. 十八、解答题 18.(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的 解析:(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键. 十九、解答题 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义 【分析】 根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠ 解析:;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义 【分析】 根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠3=∠E,等量代换即可的,即可证明AD平分∠BAC. 【详解】 证明:∵AD⊥BC,EG⊥BC ∴∠ADC==90°(垂直定义) ∴∥EG(同位角相等,两直线平行) ∴∠1=(两直线平等行,同位角相等) ∠2=∠3(两直线平行,内错角相等) 又∵∠3=∠E(已知) ∴=∠2(等量代换) ∴AD平分∠BAC(角平分线的定义) 故答案是:∠EGC;AD;∠E;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义. 【点睛】 本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键. 二十、解答题 20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2 【分析】 (1)根据平面直角坐标系写出各点的坐标即可; (2)根据对 解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2 【分析】 (1)根据平面直角坐标系写出各点的坐标即可; (2)根据对应点A、A′的变化写出平移方法即可; (3)根据平移规律逆向写出点P′的坐标; (4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解. 【详解】 解:(1)A′(-3,1); B′(-2,-2);C′(-1,-1); (2)向左平移4个单位,向下平移2个单位; (3)若点P(a,b)是△ABC内部一点, 则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2); (4)△ABC的面积==2. 【点睛】 本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键. 二十一、解答题 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠ 解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可; (2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC; (3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC. 【详解】 (1)如图1,过P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=∠BAP,∠CPE=∠DCP, ∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC. 理由:如图2,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠AKE=∠BAK,∠CKE=∠DCK, ∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP+∠DCP, ∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC, ∴∠AKC=∠APC; (3)∠AKC=∠APC 理由:如图3,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP﹣∠DCP, ∵∠BAK=∠BAP,∠DCK=∠DCP, ∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC, ∴∠AKC=∠APC. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算. 二十四、解答题 24.(1)①见解析;②垂;(2)见解析 【分析】 (1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线; ②步骤(b)中,折纸实际上是在寻找过点的直线的垂线. (2)先根据 解析:(1)①见解析;②垂;(2)见解析 【分析】 (1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线; ②步骤(b)中,折纸实际上是在寻找过点的直线的垂线. (2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论. 【详解】 (1)解:①如图2所示: ②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线. 故答案为垂; (2)证明:平分,平分(已知), ,(角平分线的定义), (已知), (两直线平行,内错角相等), (等量代换), (等式性质), (内错角相等,两直线平行). 【点睛】 本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服