资源描述
2022年人教版中学七7年级下册数学期末测试题及解析
一、选择题
1.下列图形中,与是同旁内角的是( )
A. B. C. D.
2.下列生活现象中,不是平移现象的是( )
A.人站在运行着的电梯上 B.推拉窗左右推动
C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.给出下列命题:①等边三角形是等腰三角形;②三角形的重心是三角形三条中线的交点;③三角形的外角等于两个内角的和;④三角形的角平分线是射线;⑤三角形相邻两边组成的角叫三角形的内角;⑥三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.其中正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图, ,若,,,则下列说法正确的是( )
A. B. C. D.
6.下列说法正确的是( )
A.0的立方根是0 B.0.25的算术平方根是-0.5
C.-1000的立方根是10 D.的算术平方根是
7.如图,在中,交AC于点E,交BC于点F,连接DC,,,则的度数是( )
A.42° B.38° C.40° D.32°
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,⋯⋯以此类推,当点A1的坐标为(2,1)时,点A2021的坐为( )
A.(2,1) B.(0,﹣3) C.(﹣4,﹣1) D.(﹣2,3)
九、填空题
9.的算术平方根是 _____.
十、填空题
10.若过点的直线与轴平行,则点关于轴的对称点的坐标是_________.
十一、填空题
11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则
∠AOE=_____.
十二、填空题
12.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.
十三、填空题
13.如图,将长方形纸片沿折叠,交于点E,得到图1,再将纸片沿折叠.得到图2,若,则图2中的为_______
十四、填空题
14.阅读下列解题过程:
计算:
解:设①
则②
由②-①得,
运用所学到的方法计算:______________.
十五、填空题
15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______.
十六、填空题
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中的值:
(1);
(2).
十九、解答题
19.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)
解:DE∥BC.理由如下:
∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),
∴∠2=∠4( ).
∴ ∥ ( ).
∴∠3= ( ).
∵∠3=∠B( ),
∴ = ( ).
∴DE∥BC( ).
二十、解答题
20.如图,三角形ABC在平面直角坐标系中,
(1)请写出三角形ABC各点的坐标;
(2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;
(3)求出三角形ABC的面积.
二十一、解答题
21.阅读材料,解答问题:
材料:∵即,∴的整数部分为2,小数部分为.
问题:已知的立方根是3,的算术平方根是4,c是的整数部分.
(1)求的小数部分.
(2)求的平方根.
二十二、解答题
22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
二十三、解答题
23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
二十四、解答题
24.综合与探究(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;
(问题迁移)
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.
①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
二十五、解答题
25.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分
(1)求的度数;
(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义去判断
【详解】
∵A选项中的两个角,符合同旁内角的定义,
∴选项A正确;
∵B选项中的两个角,不符合同旁内角的定义,
∴选项B错误;
∵C选项中的两个角,不符合同旁内角的定义,
∴选项C错误;
∵D选项中的两个角,不符合同旁内角的定义,
∴选项D错误;
故选A.
【点睛】
本题考查了同旁内角的定义,结合图形准确判断是解题的关键.
2.C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发
解析:C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.
故选:C.
【点睛】
本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点(3,-2)所在象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据等边三角形的性质可以判断①,根据三角形重心的定义可判断②,根据三角形内角和定理可判断③,根据三角形角平分线的定义可以判断④,根据三角形的内角的定义可以判断⑤,根据三角形的高的定义以及直角三角形的高可以判断⑥.
【详解】
①等边三角形是等腰三角形,①正确;
②三角形的重心是三角形三条中线的交点,②正确;
③三角形的外角等于不相邻的两个内角的和,故③不正确;
④三角形的角平分线是线段,故④不正确;
⑤三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,⑤错误;
⑥三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上.
正确的有①②,共计2个,
故选B
【点睛】
本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键.
5.D
【分析】
根据平行线的性质进行求解即可得到答案.
【详解】
解:∵BE∥CD
∴∠ 2+∠C=180°,∠ 3+∠D=180°
∵∠ 2=50°,∠ 3=120°
∴∠C=130°,∠D=60°
又∵BE∥AF,∠ 1=40°
∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°
故选D.
【点睛】
本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
6.A
【分析】
根据算术平方根以及立方根的概念逐一进行凑数即可得.
【详解】
A.0的立方根是0,正确,符合题意;
B.0.25的算术平方根是0.5,故B选项错误,不符合题意;
C.-1000的立方根是-10,故C选项错误,不符合题意;
D.的算术平方根是,故D选项错误,不符合题意,
故选A.
【点睛】
本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.
7.D
【分析】
由可得到与的关系,利用三角形的外角与内角的关系可得结论.
【详解】
解:,,
.
,,
.
故选:.
【点睛】
本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.
8.A
【分析】
根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A
解析:A
【分析】
根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,
∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).
∵2021=505×4+1,
∴点A2021的坐标为(2,1).
故选:A.
【点睛】
本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.
九、填空题
9.2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去
解析:2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.
十、填空题
10.【分析】
根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标.
【详解】
解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)
∴点M关于y轴的对
解析:
【分析】
根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标.
【详解】
解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)
∴点M关于y轴的对称点的坐标为:(3,-5)
故答案为(3,-5).
【点睛】
本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.
十一、填空题
11.60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A
解析:60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.
【点睛】
本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.
十二、填空题
12.72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的
解析:72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.
十三、填空题
13.126°
【分析】
在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.
【详解】
解:在图1中,∠AEC=36°,
∵
解析:126°
【分析】
在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.
【详解】
解:在图1中,∠AEC=36°,
∵AD∥BC,
∴∠BCE=180°-∠AEC=144°,
由折叠可知:∠ECD=(180°-144°)÷2=18°,
∴∠CDE=∠AEC-∠ECD=18°,
∵∠DEF=∠AEC=36°,
∴∠EDG=180°-36°=144°,
在图2中,∠CDG=∠EDG-∠CDE=126°,
故答案为:126°.
【点睛】
本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键.
十四、填空题
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:.
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.
十五、填空题
15.-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>
解析:-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>-1,
∴-1<a<3.
故答案为:-1<a<3.
【点睛】
本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,
解析:
【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,,
∵2021=505×4+1
∴的横坐标为2×505=1010,纵坐标为1
即
故答案为:
【点睛】
本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.
十七、解答题
17.(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:
解析:(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:(1)原式==;
(2)原式=.
【点睛】
本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,然后运用直接开平方法,即可求出的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)
∴,
∴,
∴;
(2),
∴,
∴,
解析:(1);(2)
【分析】
(1)先移项,然后运用直接开平方法,即可求出的值;
(2)方程两边同时除以8,然后计算立方根,即可得到答案.
【详解】
解:(1)
∴,
∴,
∴;
(2),
∴,
∴,
∴;
【点睛】
本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题.
十九、解答题
19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB
解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.
【详解】
解:DE∥BC,理由如下:
∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠4(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.
二十、解答题
20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7
【分析】
(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;
解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7
【分析】
(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;
(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.
【详解】
解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);
(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,
平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),
平移后的△A1B1C1如下图所示:
;
(3).
【点睛】
本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
解析:(1);(2).
【分析】
(1)直接利用估算无理数的大小的方法分别得出答案;
(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.
【详解】
(1)∵即,
∴的整数部分为3,小数部分为,
∴的小数部分为;
(2)∵的立方根是3,的算术平方根是4,c是的整数部分,
∴,,,
∴,,,
∴,
的平方根是.
【点睛】
本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.
二十二、解答题
22.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
二十三、解答题
23.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
二十四、解答题
24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠
解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;
(2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是;
②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答.
【详解】
解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:
作PC∥EF,如图1,
∵PC∥EF,EF∥MN,
∴PC∥MN,
∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,
∴∠PAF+∠APC+∠PBN+∠CPB=360°,
∴∠PAF+∠PBN+∠APB=360°;
(2)①,
理由如下:如答图,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴
②当P在OB之间时,,理由如下:
如备用图1,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
当P在OA的延长线上时,,理由如下:
如备用图2,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
综上所述,∠CPD,∠α,∠β之间的数量关系是或.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.
二十五、解答题
25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2
解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
展开阅读全文