资源描述
人教版四4年级下册数学期末解答测试题含答案完整
1.两个师博加工相同的零件,张师傅5天加工3个,李师傅9天加工5个,哪位师傅的工作效率高?
2.一本故事书有48页,安安8天看完。(列式计算)
(1)平均每天看了这本书的几分之几?
(2)3天看了这本书的几分之几?
3.五(9)班的劳动课上,萝卜苗移栽比赛开始了:小星8分移栽了5株幼苗,小甜9分移栽了7株,小然4分移栽了3株。谁的移栽速度最快?(写出解答过程)
4.下图是某一时刻两家肯德基餐厅的就餐人数示意图,请你通过计算判断此时哪家餐厅比较拥挤?
5.甲、乙两个小朋友爱去图书馆看书,甲每3天去一次,乙每4天去一次,8月1日两人在图书馆相遇,至少再过多少天两人能再次在图书馆相遇?是几月几日?
6.甲、乙二人到图书馆去借书,甲每6天去一次,乙每8天去一次。如果5月2日他们二人在图书馆相遇,那么下一次都到图书馆是几月几日?
7.某市第一实验小学五(1)班有学生40~50人,将这些学生按每组6人分,正好分完,按每组8人分,也正好分完。这个班有多少人?
8.水果店有一些苹果,如果每6千克装一袋,多4千克:如果每10千克装一袋,也多4千克,这些苹果最少有多少千克?
9.一桶油,第一次用去千克,第二次用去千克,还剩千克。这桶油原重多少千克?
10.一瓶1升的饮料,小刚第一次喝了升,第二次喝了升。小刚两次共喝了多少升饮料?
11.一杯牛奶,喝了L,如果再喝L,正好喝了这杯牛奶的一半。这杯牛奶一共有多少L?
12.小芳做数学作业用了小时,做语文作业用了小时。小芳做这两项作业一共用了多少时间?
13.一节通风管长1.8米,横截面是一个边长是2分米的正方形,做5节这样的通风管共需铁皮多少平方分米?
14.有一个长方体蓄水池(如图),长10米,宽4米,深2米。
(1)蓄水池占地面积有多大?
(2)蓄水池最多能蓄水多少立方米?
(3)在蓄水池的底面和四周都抹上水泥,抹水泥的面积有多大?
15.一块长方形铁皮(如图),从四个角各切掉一个边长为的正方形,然后做成盒子。这个盒子用了多少铁皮?它的容积是多少?
16.在一个长,宽,深的长方体鱼池内壁和底面贴上瓷砖。每块瓷砖可以贴,一共需要多少块?
17.一个封闭长方体玻璃容器,从里面量长10分米、宽6分米,高4分米,水深2分米(如图1)。现将容器如图2放置,图2中的水面高度是多少分米?
18.工人师傅要将一个棱长6分米的正方体钢锭,铸造成一个长8分米,宽3分米的长方体钢锭。铸成的钢锭有多高?
19.在甲箱中装满水,若将这些水倒入乙箱,水深为几厘米?(单位:厘米)
20.如图,一块长方形铁皮长30厘米,宽20厘米,如果在这块铁皮的四个角都剪下一个边长5厘米的正方形,焊接成一个无盖长方体铁盒(忽略铁皮厚度),将铁盒装满水。
(1)水的体积是多少立方厘米?
(2)如果将盒子里的水倒一部分到下面这个容器中,使铁盒中的水面和这个容器中的水面同样高,这个容器中的水高多少厘米?
21.画一画。
(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B。
(2)将图形B绕点O逆时针旋转90°,得到图形C。
(3)将图形A向右平移8格,再向上平移5格,得到图形D。
22.画一画,算一算。(每个小方格的边长表示1厘米)
(1)图形A先向右平移了2格,再向上平移了4格,得到图形C,画出图形C。
(2)以虚线m为对称轴,画出图形B的轴对称图形D。
23.(1)画出图①的另一半,使它成为一个轴对称图形。
(2)将图②绕C点逆时针旋转90°,画出旋转后的图形。
(3)将旋转后的三角形向石平移5格,画出平移后的图形。
24.按要求作图。(每个小方格代表1cm2)
(1)在下面方格中分别标出各点:A(1,6)B(3,2)C(7,2)D(5,6)。
(2)按顺序连接A、B、C、D,得到的图形是( )形,面积是( )cm2。
(3)将图形ABCD向右平移6个方格,得到图形A′B′C′D′。
25.小华骑车从家去相距5千米的图书馆借书,根据下面的统计图回答问题。
(1)小华去图书馆的路上停车( )分钟,在图书馆借书用了( )分钟。
(2)小华骑车从图书馆返回家的平均速度是多少?
26.一个无盖的长方体玻璃鱼缸,长5分米,宽4分米,高3分米,
(1)做这个鱼缸至少需要玻璃多少平方分米?
(2)在鱼缸里注入40升水,水深多少分米(玻璃的厚度,忽略不计)
(3)再往水里放入一些鹅卵石,水面上升了0.3分米,鹅卵石的体积一共是多少立方分米?
27.下面是甲、乙两城市上半年的降水情况统计表。
1月份
2月份
3月份
4月份
5月份
6月份
甲市降水量/毫米
52
10
5
15
70
110
乙市降水量/毫米
15
36
25
75
72
120
(1)完成如图所示的统计图。
甲、乙两城市上半年降水情况统计图
(2)甲市降水量最多的月份与最少的月份相差( )毫米。
(3)乙市从( )月份到( )月份降水量增加最多。
(4)( )月份甲、乙两市的降水量最接近,( )月份甲、乙两市的降水量相差最大。
28.对生活垃圾进行分类,可以提高垃圾的经济价值,降低处理成本,减少土地资源的消耗等优点,推行垃圾分类已是大势所趋。下面是某城市2016~2020年生活垃圾中分类垃圾与未分类垃圾的数量统计图:
(1)2018年分类垃圾的数量占垃圾总量的( )(填几分之几)。
(2)分类垃圾的数量逐年( ),( )年起分类垃圾的数量超过了未分类垃圾的数量。
(3)看了这个统计结果你有什么感想或建议,写一写。
1.张师傅的工作效率高
【分析】
要求两位师傅谁的工作效率高一些,需知道两位师傅的工作效率,根据关系式:工作总量÷工作时间=工作效率,依题中条件可列式解答。
【详解】
张师傅的工作效率:3÷5=(个);
解析:张师傅的工作效率高
【分析】
要求两位师傅谁的工作效率高一些,需知道两位师傅的工作效率,根据关系式:工作总量÷工作时间=工作效率,依题中条件可列式解答。
【详解】
张师傅的工作效率:3÷5=(个);
李师傅的工作效率:5÷9=(个);
>
答:张师傅的工作效率高。
【点睛】
根据工作量÷工作时间=工作效率,求出两人的效率是完成本题的关键。
2.(1)
(2)
【分析】
(1)将故事书总页数看作单位“1”,1÷天数=每天看这本书的几分之几;
(2)3天÷总天数=3天看了这本书的几分之几。
【详解】
(1)1÷8=
答:平均每天看了这本书的。
解析:(1)
(2)
【分析】
(1)将故事书总页数看作单位“1”,1÷天数=每天看这本书的几分之几;
(2)3天÷总天数=3天看了这本书的几分之几。
【详解】
(1)1÷8=
答:平均每天看了这本书的。
(2)3÷8=
答:3天看了这本书的。
【点睛】
分数的分子相当于被除数,分母相当于除数。
3.小甜
【分析】
分别用幼苗株数除以时间求出三人的移栽速度,再进行比较。
异分母分数比较大小,先通分成分母相同的分数,再比较。
【详解】
小星:5÷8=(株)
小甜:7÷9=(株)
小然:3÷4=
解析:小甜
【分析】
分别用幼苗株数除以时间求出三人的移栽速度,再进行比较。
异分母分数比较大小,先通分成分母相同的分数,再比较。
【详解】
小星:5÷8=(株)
小甜:7÷9=(株)
小然:3÷4=(株)
答:小甜的移栽速度最快。
【点睛】
本题考查分数与除法的关系、分数大小比较的应用。熟练掌握通分的方法是解题的关键。
4.餐厅一比较拥挤,计算见解析
【分析】
根据题意,先求出两个餐厅的面积,再用两餐厅的面积分别除以两个餐厅的人数,求出两个餐厅人均占地面积,再比较大小,即可解答。
【详解】
餐厅一:12×8÷84
=9
解析:餐厅一比较拥挤,计算见解析
【分析】
根据题意,先求出两个餐厅的面积,再用两餐厅的面积分别除以两个餐厅的人数,求出两个餐厅人均占地面积,再比较大小,即可解答。
【详解】
餐厅一:12×8÷84
=96÷84
=(平方米)
餐厅二:8×6÷36
=48÷36
=(平方米)
=
=
<
餐厅一比较拥挤
答:餐厅一比较拥挤。
【点睛】
本题考查分数与除法的关系,以及分数比较大小。
5.12天;8月13日
【分析】
求他俩再次都到图书馆所需要的天数,就是求3和4的最小公倍数,3和4的最小公倍数是12;所以8月1日再加12天即为他们下一次同时到图书馆是几月几日;据此解答。
【详解】
解析:12天;8月13日
【分析】
求他俩再次都到图书馆所需要的天数,就是求3和4的最小公倍数,3和4的最小公倍数是12;所以8月1日再加12天即为他们下一次同时到图书馆是几月几日;据此解答。
【详解】
3和4的最小公倍数是12;
1+12=13(日),
答:至少再过12天两人能再次在图书馆相遇,8月13日。
【点睛】
解答本题的关键是:理解他们从8月1日到下一次都到图书馆之间的天数是3和4的最小公倍数,再根据年月日的知识计算日期。
6.5月26日
【分析】
根据题意,下一次都到图书馆经过的天数是6和8的最小公倍数。6和8的最小公倍数是24,2+24=26,则下一次都到图书馆是5月26日。
【详解】
6和8的最小公倍数是2×3×4
解析:5月26日
【分析】
根据题意,下一次都到图书馆经过的天数是6和8的最小公倍数。6和8的最小公倍数是24,2+24=26,则下一次都到图书馆是5月26日。
【详解】
6和8的最小公倍数是2×3×4=24。
2+24=26(日)
答:下一次都到图书馆是5月26日。
【点睛】
本题考查最小公倍数的应用。理解“下一次都到图书馆经过的天数是6和8的最小公倍数”是解题的关键。
7.48人
【分析】
要求这个班有多少人,即求50以内6、8的公倍数,先求出6、8的最小公倍数,再找符合条件的最小公倍数的倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×3×
解析:48人
【分析】
要求这个班有多少人,即求50以内6、8的公倍数,先求出6、8的最小公倍数,再找符合条件的最小公倍数的倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×3×2×2=24。
24×2=48(人)
答:这个班有48人。
【点睛】
此题主要考查应用两个数的公倍数的知识解决实际问题。
8.34千克
【分析】
苹果每袋装6千克或者10千克,都会多4千克,需要求苹果最少的重量,即求出6和10 的最小公倍数,再加上多出的4千克,即可得出答案。
【详解】
,,则6和10的最小公倍数为; ;
解析:34千克
【分析】
苹果每袋装6千克或者10千克,都会多4千克,需要求苹果最少的重量,即求出6和10 的最小公倍数,再加上多出的4千克,即可得出答案。
【详解】
,,则6和10的最小公倍数为; ;
再加上多出的4千克,即(千克)。
答:这些苹果最少有34千克。
【点睛】
本题主要考查的是最小公倍数的应用,解题的关键是理解求苹果最少即是求两个数的最小公倍数再加上多出来的苹果数。
9.2千克
【分析】
根据加法的意义可知,将两次用去的量及剩下的数量加在一起,就是这桶油原重多少。
【详解】
=
=2(千克)
答:这桶油原重2千克。
【点睛】
本题考查了分数加法的应用,根据加法
解析:2千克
【分析】
根据加法的意义可知,将两次用去的量及剩下的数量加在一起,就是这桶油原重多少。
【详解】
=
=2(千克)
答:这桶油原重2千克。
【点睛】
本题考查了分数加法的应用,根据加法的意义解答即可。
10.升
【分析】
将两次喝的升数相加即可。
【详解】
+=(升);
答:小刚两次共喝了升饮料。
【点睛】
熟练掌握异分母分数加减法的计算方法是解答本题的关键。
解析:升
【分析】
将两次喝的升数相加即可。
【详解】
+=(升);
答:小刚两次共喝了升饮料。
【点睛】
熟练掌握异分母分数加减法的计算方法是解答本题的关键。
11.L
【分析】
先利用加法求出这杯牛奶一半的量,再乘2得到这杯牛奶一共的量即可。
【详解】
(+)×2
=×2
=(L)
答:这杯牛奶一共有L。
【点睛】
本题考查了分数乘法的应用,正确理解题意并列式
解析:L
【分析】
先利用加法求出这杯牛奶一半的量,再乘2得到这杯牛奶一共的量即可。
【详解】
(+)×2
=×2
=(L)
答:这杯牛奶一共有L。
【点睛】
本题考查了分数乘法的应用,正确理解题意并列式是解题的关键。
12.小时
【分析】
根据异分母分数加减法的计算方法,将做数学作业和语文作业的时间加起来即可。
【详解】
+
=+
=(小时)
答:小芳做这两项作业一共用了小时。
【点睛】
异分母分数相加减,先通分再计算
解析:小时
【分析】
根据异分母分数加减法的计算方法,将做数学作业和语文作业的时间加起来即可。
【详解】
+
=+
=(小时)
答:小芳做这两项作业一共用了小时。
【点睛】
异分母分数相加减,先通分再计算。
13.720平方分米
【分析】
通风管道没有上、下底,根据长方体表面积公式求出侧面积,再乘5即可求出做5节这样的通风管需要的铁皮面积。
【详解】
1.8米=18分米
2×4×18×5
=8×18×5
=7
解析:720平方分米
【分析】
通风管道没有上、下底,根据长方体表面积公式求出侧面积,再乘5即可求出做5节这样的通风管需要的铁皮面积。
【详解】
1.8米=18分米
2×4×18×5
=8×18×5
=720(平方分米)
答:做5节这样的通风管共需铁皮720平方分米。
【点睛】
解题时要明确通风管道没有上、下底。
14.(1)40平方米
(2)80立方米
(3)96平方米
【分析】
(1)占地面积指的是底面积,用长×宽即可;
(2)根据长方体体积=长×宽×高,列式解答即可;
(3)用长×宽+长×高×2+宽×高×2=
解析:(1)40平方米
(2)80立方米
(3)96平方米
【分析】
(1)占地面积指的是底面积,用长×宽即可;
(2)根据长方体体积=长×宽×高,列式解答即可;
(3)用长×宽+长×高×2+宽×高×2=抹水泥面积,据此列式解答。
【详解】
(1)10×4=40(平方米)
答:蓄水池占地面积有40平方米。
(2)10×4×2=80(立方米)
答:蓄水池最多能蓄水80立方米。
(3)40+10×2×2+4×2×2
=40+40+16
=96(平方米)
答:抹水泥的面积有96平方米。
【点睛】
关键是掌握长方体体积和表面积公式。
15.900cm2;2250cm3
【分析】
观察图形,做成的无盖长方体盒子的长是30厘米、宽是15厘米、高是5厘米。据此,结合长方体的表面积和体积公式,分别求出这个盒子用了多少铁皮以及容积是多少。
【详
解析:900cm2;2250cm3
【分析】
观察图形,做成的无盖长方体盒子的长是30厘米、宽是15厘米、高是5厘米。据此,结合长方体的表面积和体积公式,分别求出这个盒子用了多少铁皮以及容积是多少。
【详解】
长:40―5―5=30(厘米)
宽:25―5―5=15(厘米)
用的铁皮面积:
30×15+30×5×2+15×5×2
=450+300+150
=900(平方厘米)
容积:30×15×5=2250(立方厘米)
答:这个盒子用了900平方厘米的铁皮,它的容积是2250立方厘米。
【点睛】
本题考查了长方体的表面积和体积,灵活运用长方体的表面积和体积公式是解题的关键。
16.块
【分析】
长方体鱼池内壁和底面贴上瓷砖,即需要算出长方体的一个底面积和侧面积,可根据长方体的表面积公式进行求解,由于只是铺设5个面,因此只需要计算5个面。再将单位化为统一,即可算出需要瓷砖的块数
解析:块
【分析】
长方体鱼池内壁和底面贴上瓷砖,即需要算出长方体的一个底面积和侧面积,可根据长方体的表面积公式进行求解,由于只是铺设5个面,因此只需要计算5个面。再将单位化为统一,即可算出需要瓷砖的块数。
【详解】
这个长方体鱼池内壁需要贴瓷砖的面积为:
(m2);
56m2=5600dm2,则所需瓷砖为:(块)。
答:一共需要瓷砖1400块。
【点睛】
本题主要考查的是长方体表面积公式的实际应用,解题时需要注意长方体鱼池中只需要铺设5个面,即计算4个侧面积加上一个底面积。
17.3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10
解析:3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10)
=10×6×2÷40
=3(分米)
答:图2中的水面高度是3分米。
【点睛】
灵活运用长方体体积计算公式是解题的关键。
18.9分米
【解析】
【详解】
6×6×6÷8÷3=9(分米)
答:高是9分米
解析:9分米
【解析】
【详解】
6×6×6÷8÷3=9(分米)
答:高是9分米
19.10厘米
【分析】
长方体的容积计算公式与体积计算公式相同。因为水的体积不变,首先计算出甲水箱的容积,再除以乙水箱的底面积,就可以得到乙水箱的水深。
【详解】
20×30×5=3000(立方厘米)
解析:10厘米
【分析】
长方体的容积计算公式与体积计算公式相同。因为水的体积不变,首先计算出甲水箱的容积,再除以乙水箱的底面积,就可以得到乙水箱的水深。
【详解】
20×30×5=3000(立方厘米)
3000÷(20×15)
=3000÷300
=10(厘米)
答:乙水箱水深10厘米。
【点睛】
抓住水的体积不变解决问题,解答此题还要牢记长方体的体积公式。
20.(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=
解析:(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=容器中水的体积,据此列方程解答。
【详解】
(1)30×20×5
=600×5
=3000(立方厘米)
答:水的体积是3000立方厘米。
(2)解:设这个容器中的水高为x厘米,
30×20×(5-x)=10×5×x
12×(5-x)=x
60-12x=x
13x=60
x=
答:这个容器中的水高厘米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关系。
21.如图:
【解析】
【详解】
略
解析:如图:
【解析】
【详解】
略
22.见详解
【分析】
(1)根据平移的特征,将图形A的4个关键点先向右平移了2格,再向上平移了4格,再依次连接即可得出图形C;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对
解析:见详解
【分析】
(1)根据平移的特征,将图形A的4个关键点先向右平移了2格,再向上平移了4格,再依次连接即可得出图形C;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,分别画出图形B的几个对称点,然后连接即可画出图形B的轴对称图形D。
【详解】
画图如下:
【点睛】
本题主要考查作平移后的图形及补全轴对称图形。
23.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°,点C的位置不动,其余各部分均绕此点按相同的方向旋转相同的度数,即可画出旋转后的图形;
(3)再根据平移的特点:将旋转后的三角形向石平移5格,作图即可。
【详解】
如图所示:
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点后依次连结各特征点即可;旋转作图要注意:①旋转方向;②旋转角度;平移时要注意:大小、形状不变,只是位置变了。
24.(1)(2)(3)作图见详解
(2)平行四边;16
【分析】
(1)平面内,列数是按从左至右的顺序数,行数是按从下到上的顺序数,描点时注意先列后行;
(2)可用平移的方法,想象把这个平行四边形拼接成
解析:(1)(2)(3)作图见详解
(2)平行四边;16
【分析】
(1)平面内,列数是按从左至右的顺序数,行数是按从下到上的顺序数,描点时注意先列后行;
(2)可用平移的方法,想象把这个平行四边形拼接成一个长方形,因为每个小方格代表1cm2,所以再数出长方形有多少个格子,平行四边形的面积就是多少平方厘米;
(3)先分别将平行四边形ABCD的四个点向右平移6个方格,再用线段顺次连接这四个点即可得到平移后的图形。
【详解】
(2)按顺序连接A、B、C、D,得到的图形是平行四边形,面积是16cm2。
(1)和(2)(3)如下图所示:
【点睛】
首先要明确根据数对确定具体位置的方法;其次懂得确定平移图形的基本要素有两个:平移方向、平移距离。
25.(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解
解析:(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解】
(1)40-20=20(分钟),100-60=40(分钟)
小华去图书馆的路上停车(20)分钟,在图书馆借书用了(40)分钟。
(2)120-100=20(分钟)=(小时)
5÷=15(千米/时)
答:小华骑车从图书馆返回家的平均速度是15(千米/时)。
【点睛】
本题考查有关行程的折线统计图,明确上升、水平、下降所表示的含义是解题的关键。
26.(1)74平方分米(2)2分米(3)6立方分米
【分析】
(1)因为鱼缸无盖,所以求它的5个面的总面积,根据长方体的表面积公式解答.
(2)根据长方体的体积公式:v=sh,用水的体积除以鱼缸的底面积
解析:(1)74平方分米(2)2分米(3)6立方分米
【分析】
(1)因为鱼缸无盖,所以求它的5个面的总面积,根据长方体的表面积公式解答.
(2)根据长方体的体积公式:v=sh,用水的体积除以鱼缸的底面积即可求出高.
(3)这些鹅卵石的体积等于鱼缸中上升的水的体积,根据长方体的体积公式进行解答.
【详解】
(1)4×5+(3×4+5×3)×2
=20+(12+15)×2
=20+54
=74(平方分米)
答:做这个鱼缸至少需要玻璃74平方分米.
(2)40升=40立方分米,
40÷(4×5)
=40÷20
=2(分米)
答:水深2分米.
③4×5×0.3
=6(立方分米)
答:这些鹅卵石的体积一共是6立方分米.
27.(1)见详解
(2)105
(3)3;4
(4)5;4
【分析】
(1)根据复式折线统计图的特点,结合统计表的数据绘制即可;
(2)通过统计图分析,甲市6月降水量最多,110毫米,3月份降水量最少,
解析:(1)见详解
(2)105
(3)3;4
(4)5;4
【分析】
(1)根据复式折线统计图的特点,结合统计表的数据绘制即可;
(2)通过统计图分析,甲市6月降水量最多,110毫米,3月份降水量最少,5毫米,用110-5算出结果即可;
(3)通过统计图观察,找出两个月份降水量相差的最多(或者直线越趋近于竖直),即降水量增加的最多。
(4)找出甲、乙两市降水量相差的最少,即最接近,降水量差值越大,则相差越大。由此即可解答。
【详解】
(1)
(2)110-5=105(毫米)
(3)通过统计图可知,乙市从3月份到4月份降水量增加最多;
(4)5月份甲、乙两市的降水量最接近,4月份甲、乙两市的降水量相差最大。
【点睛】
本题主要考查绘制复式条形统计图以及数据分析,学会灵活分析统计图。
28.(1)
(2)分类垃圾的数量逐年增加;2020
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。
【分析】
(1)观察统计图,找出2018年分类垃圾和没分类垃圾的吨数,
解析:(1)
(2)分类垃圾的数量逐年增加;2020
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。
【分析】
(1)观察统计图,找出2018年分类垃圾和没分类垃圾的吨数,用分类垃圾除以分类垃圾与没分类垃圾的和;
(2)观察分类垃圾的趋势,找出哪年分类垃圾超过没分垃圾的数量;
(3)根据统计图提供的的信息,说说你对分类垃圾的意义。
【详解】
(1)10÷(12+10)
=10÷22
=
(2)分类垃圾的数量逐年增加,2020年起分类垃圾的数量超过了没分类垃圾的数量;
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。(答案不唯一)
【点睛】
本题考查根据统计图提供的信息,解答问题。
展开阅读全文