资源描述
初二上学期期末模拟数学质量检测试题
一、选择题
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.世界最大的单口径球面射电望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒.数据0.00519用科学记数法可以表示为( )
A. B. C. D.
3.下列计算中一定正确的是( )
A.a2+a3=a5 B.a2•a3=a6 C.(ab)2=ab2 D.(﹣a2)3=﹣a6
4.当分式有意义时,字母应满足 ( )
A. B. C. D.
5.下列由左边到右边的变形是因式分解的是( )
A. B.
C. D.
6.下列等式成立的是( )
A. B. C. D.
7.如图,点E、H、G、N共线,∠E=∠N,EF=NM,添加一个条件,不能判断△EFG≌△NMH的是( )
A.EH=NG B.∠F=∠M C.FG=MH D.
8.若关于的方程有增根,则的值为( )
A.-5 B.0 C.1 D.2
9.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点在的延长线上,点在上,,,,当边与射线所夹的锐角为时,则:①AB∥CF;②;③;④点和点到的距离相等.以上四个结论正确的有几个( )
A.个 B.个 C.个 D.个
10.如图,, AD、BD、CD分别平分外角、内角、外角.以下结论:①:②;③;④:⑤.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.若分式的值为0,则______.
12.在平面直角坐标系中,作点A(4,-3)关于x轴的对称点,再向右平移2个单位长度得到点,则点的坐标是__________.
13.如果a+b=2,那么的值是_____.
14.若3x-5y-1=0,则________.
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
16.若是一个完全平方式,那么_________.
17.已知a+b=3,ab=2,则a2+b2的值为______.
18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B运动,同时,点Q以cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,的值为_____________
三、解答题
19.因式分解:
(1);
(2)
20.解分式方程:.
21.如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=112°,求∠BCF的度数.
22.在学习完《7.5三角形内角和定理》,小芳和同学们作如下探究:
已知:在中,,分别是的边,上的点,点是边上的一个动点,令,.
(1)他们探究得到:四边形的内角和是.
理由如下:如图①,连接,
在和中,
,
( ).
( ).
.
即四边形的内角和是.
(2)如图①,点在线段上,且,求的度数.
(3)如果点运动到的延长线上,请在图②中补全图形,并直接写出,,之间的等量关系.
23.为进一步落实“德、智、体、美、劳”五有并举工作,某中学以体有为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校开展球类活动,已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.
(1)足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共200个,总费用不超过15600元,学校最多可以购买多少个篮球?
24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因,将左边展开得到,移项可得:.
数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数、,都存在,并进一步发现,两个非负数、的和一定存在着一个最小值.
根据材料,解答下列问题:
(1)__________(,);___________();
(2)求的最小值;
(3)已知,当为何值时,代数式有最小值,并求出这个最小值.
25.已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
26.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)
(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;
(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.
【参考答案】
一、选择题
2.B
解析:B
【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.
【详解】A.是轴对称图形,不是中心对称图形,故A错误;
B.是轴对称图形,也是中心对称图形,故B正确;
C.是轴对称图形,不是中心对称图形,故C错误;
D.是轴对称图形,不是中心对称图形,故D错误.
故选:B.
【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
3.B
解析:B
【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【详解】解:0.00519=.
故选:B.
【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.
4.D
解析:D
【分析】分别根据同底数幂的乘法法则,积的乘方和幂的乘方运算法则,合并同类项法则逐一判断即可.
【详解】解:A.a2与a3不是同类项,不能合并,故此选项计算错误,不符合题意;
B.a2•a3=a5,故此选项计算错误,不符合题意;
C.(ab)2=ab2,故此选项计算错误,不符合题意;
D.(﹣a2)3=﹣a6,计算正确,符合题意;
故选:D.
【点睛】本题考查了同底数幂的乘法,积的乘方和幂的乘方运算,合并同类项等,熟记相关运算法则是解答本题的关键.
5.D
解析:D
【分析】根据分式有意义,分母不等于0即可求解.
【详解】解:由题意得,,即分式时,分式有意义,
故选:D
【点睛】本题考查了分式有意义的条件.(1)若分式无意义,则分母为零;(2)若分式有意义,则分母不为零.
6.D
解析:D
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】解:A.等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;
B.等式左右两边不相等,不是因式分解,故此选项不符合题意;
C.原变形是整式乘法,不是因式分解,故此选项不符合题意;
D.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;
故选:D
【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
7.C
解析:C
【分析】根据分式的基本性质进行计算逐一判断即可.
【详解】解:A、,故A不符合题意;
B、,故B不符合题意;
C、,故C符合题意;
D、,故D不符合题意;
故选:C.
【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.
8.C
解析:C
【分析】根据全等三角形的判定定理,即可一一判定.
【详解】解:在△EFG与△NMH中,已知,∠E=∠N,EF=NM,
A.由EH=NG可得EG=NH,所以添加条件EH=NG,根据SAS可证△EFG≌△NMH,故本选项不符合题意;
B.添加条件∠F=∠M,根据ASA可证△EFG≌△NMH,故本选项不符合题意;
C.添加条件FG=MH,不能证明△EFG≌△NMH,故本选项符合题意;
D.由可得∠EGF=∠NHM,所以添加条件,根据AAS可证△EFG≌△NMH,故本选项不符合题意;
故选:C.
【点睛】本题考查了全等三角形的判定定理,熟练掌握和运用全等三角形的判定定理是解决本题的关键.
9.A
解析:A
【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答.
【详解】解:,
去分母得,m+1+2x=0,
解得:,
∵方程有增根,
∴x=2,
把x=2代入,得,
,
解得.
故选A.
【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.
10.D
解析:D
【分析】先根据判定AB∥FC,然后根据垂直的定义得出,进而求出,再利用外角的性质求出.
【详解】解:如图,
,
∴AB∥FC,故正确;
,
,
,故正确;
,,
,故正确;
平行线间的距离处处相等,且AB∥FC,
∴点和点到的距离相等,故正确.
故正确的结论有个,
故选:D.
【点睛】本题考查的是平行线的性质和三角形外角的性质,解题的关键是熟练掌握平行线的性质并灵活运用,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
11.C
解析:C
【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.
【详解】解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵AD平分∠EAC,CD平分∠ACF,
∴∠DAC=∠EAC,∠DCA=∠ACF,
∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,
∴∠ADC=180°-(∠DAC+∠ACD)
=180°-(∠EAC+∠ACF)
=180°-(∠ABC+∠ACB+∠ABC+∠BAC)
=180°-(180°-∠ABC)
=90°-∠ABC,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵AD∥BC,
∴∠ADC=∠DCF,
∵BD平分∠ABC,
∴∠ABC=∠DBC,
∵∠DCF=∠DBC+∠BDC,
∴∠DCF>∠DBC,
∴∠ADC>∠ABC∴⑤错误;
即正确的有3个,
故选C.
【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考查学生的推理能力,有一定的难度.
二、填空题
12.-1
【分析】根据分式的值为零的条件即可求出x的值.
【详解】解:由题意可知:|x|-1=0且x-1≠0,
解得x=-1.
故答案为:-1.
【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.
13.A
解析:
【分析】根据点关于x轴对称的坐标规律“横坐标不变,纵坐标互为相反数”得到,再根据点平移坐标规律“右加左减,上加下减”得到即可.
【详解】解:点A(4,-3)关于x轴的对称点的坐标为(4,3),再将向右平移2个单位长度得到点的坐标为(6,3),
故答案为:(6,3).
【点睛】本题考查坐标与图形变换-轴对称和平移,熟练掌握点关于轴对称和平移的坐标变换规律是解答的关键.
14.2
【分析】先将原式化为同分母分式的减法,再依据法则计算、化简,继而将a+b的值代入计算可得.
【详解】原式=﹣
=
=
=a+b,
当a+b=2时,
原式=2,
故答案为:2.
【点睛】此题主要考查分式的化简求值,熟练掌握,即可解题.
15.10
【分析】原式利用同底数幂的除法法则变形,将已知等式代入计算即可求出值.
【详解】解:,即,
∴原式=.
故答案为:10
【点睛】此题考查了同底数幂的除法,熟练掌握运算法则是解本题的关键.
16.【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+F
解析:
【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
【详解】以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是2.
【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
17.17或-15##-15或17
【分析】根据完全平方公式,即可解答.
【详解】解:∵x2+(m-1)x+64是一个完全平方式,
∴(m-1)x=±16x,
∴m-1=±16,
∴m=17或-
解析:17或-15##-15或17
【分析】根据完全平方公式,即可解答.
【详解】解:∵x2+(m-1)x+64是一个完全平方式,
∴(m-1)x=±16x,
∴m-1=±16,
∴m=17或-15,
故答案为:17或-15.
【点睛】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解
18.【分析】利用完全平方公式:,进行转化,即可求出结果.
【详解】解:∵.
故答案为:5.
【点睛】本题主要考查的是整式乘除中完全平方公式的运用,掌握其变形形式是解题的关键.
解析:
【分析】利用完全平方公式:,进行转化,即可求出结果.
【详解】解:∵.
故答案为:5.
【点睛】本题主要考查的是整式乘除中完全平方公式的运用,掌握其变形形式是解题的关键.
19.2或
【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.
【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8
解析:2或
【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.
【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,
∵∠A=∠B,
∴CP和PQ是对应边,
当△ACP与△BPQ全等时,
①AP=BQ,即:2t= xt,
解得:x=2,
②AP=PB,即:2t=8-2t,
解得:t=2,
此时,BQ=AC,xt=5,即:2x=5,
解得:x=
故填:2或.
【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.
三、解答题
20.(1)3(x-2y)2;
(2)(x-5y)(x+2y).
【分析】(1)先提公因式,再用完全平方公式分解因式即可;
(2)用十字相乘法分解因式即可.
(1)
解:
=3(x2-4xy+
解析:(1)3(x-2y)2;
(2)(x-5y)(x+2y).
【分析】(1)先提公因式,再用完全平方公式分解因式即可;
(2)用十字相乘法分解因式即可.
(1)
解:
=3(x2-4xy+4y2)
=3(x-2y)2;
(2)
解:
=(x-5y)(x+2y).
【点睛】本题考查了提公因式法与公式法的综合运用,十字相乘法,掌握a2±2ab+b2=(a±b)2是解题的关键.
2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】解:去分母得:,
去括号,得:,
移项,得:,
合并同类项,得:,
系数化为1,
解析:
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】解:去分母得:,
去括号,得:,
移项,得:,
合并同类项,得:,
系数化为1,得:,
经检验是分式方程的解.
【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
22.46°
【分析】先根据邻补角互补求出∠DFB的度数,然后根据直角三角形两锐角互余求出∠DBF的度数,再根据角平分线的定义求出∠CBF的度数,最后利用三角形内角和定理即可求出∠BCF的度数.
【详
解析:46°
【分析】先根据邻补角互补求出∠DFB的度数,然后根据直角三角形两锐角互余求出∠DBF的度数,再根据角平分线的定义求出∠CBF的度数,最后利用三角形内角和定理即可求出∠BCF的度数.
【详解】解:∵∠BFC=112°,
∴∠DFB=180°-∠BFC=68°,
∵CD是△ABC中AB边上的高,
∴∠BDF=90°,
∴∠DBF=90°-∠DFB=22°,
∵BE平分∠ABC,
∴∠CBF=∠DBF=22°,
∴∠BCF=180°-∠BFC-∠CBF=46°.
【点睛】本题主要考查了邻补角互补,直角三角形两锐角互余,角平分的定义,三角形内角和定理,正确求出∠CBF的度数是解题的关键.
23.(1)三角形的内角和等于;等式的性质
(2)124°
(3)或
【分析】(1)根据三角形内角和定理、等式的性质直接得出.
(2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义
解析:(1)三角形的内角和等于;等式的性质
(2)124°
(3)或
【分析】(1)根据三角形内角和定理、等式的性质直接得出.
(2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义进行等量代换即可得出.
(3)利用三角形内角和定理、平角的定义建立等式,等量代换推理得出.
(1)解:如图①,连接,在和中,,(三角形的内角和等于).(等式的性质)..四边形的内角和是.
(2)解:由(1)得,(已证),,(已知). ①又,,(平角的定义),.,(等式的性质). ②由①②得,,.
(3)如图②,.,,,,,.,.如图③,.,,,.,,..
【点睛】本题主要考查三角形内角和定理的理解与探索论证能力.涉及以下知识点:三角形三个内角和等于;平角等于,是角的两边成一条直线时所成的角;对顶角相等.灵活运用三角形内角和定理、平角的定义、已知信息建立等式,从而可以等量代换是解本题的关键.
24.(1)足球的单价是60元,篮球的单价是90元
(2)120个
【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解
解析:(1)足球的单价是60元,篮球的单价是90元
(2)120个
【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程即可;
(2)设学校可以购买篮球,则可以购买个足球,由总价单价数量,且购买足球和篮球的总费用不超过15600元,列出一元一次不等式,解不等式即可.
(1)
解:设足球的单价是元,则篮球的单价是元,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意,
.
答:足球的单价是60元,篮球的单价是90元.
(2)
设学校可以购买个篮球,则可以购买个足球,
依题意得:,
解得:,
答:学校最多可以购买120个篮球.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
25.(1),2;(2);(3)当时,代数式的最小值为2019.
【分析】(1)根据阅读材料即可得出结论;
(2)根据阅读材料介绍的方法即可得出结论;
(3)把已知代数式变为,再利用阅读材料介绍的方
解析:(1),2;(2);(3)当时,代数式的最小值为2019.
【分析】(1)根据阅读材料即可得出结论;
(2)根据阅读材料介绍的方法即可得出结论;
(3)把已知代数式变为,再利用阅读材料介绍的方法,即可得到结论.
【详解】(1)∵,,
∴,
∵,
∴;
(2)当x时,,均为正数,
∴
所以,的最小值为.
(3)当x时,,,2x-6均为正数,
∴
由可知,当且仅当时,取最小值,
∴当,即时,有最小值.
∵x
故当时,代数式的最小值为2019.
【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.
26.(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明
解析:(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
27.(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18
解析:(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;
(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;
(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.
(1)
证明:∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵点B与点D关于直线l对称,
∴BD⊥直线l,BC=CD,
∵直线l∥AB,
∴BD⊥AB,
∴∠ABD=90°,
∴∠CBD=∠CDB=45°,
∴∠BCD=90°,
∴∠ACB+∠BCD=180°,
∴A、C、D三点共线;
(2)
解:∵AC=10cm,BC=7cm,
∴当点F沿D→C方向时,0≤t≤3.5,
∴CE=10-t,CF=7-2t,
∵CE=2CF,
∴10-t=2(7-2t),
解得:t=.
(3)
解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,
∴∠MEC=∠FCN,
∵△CEM≌△CFN,
当CE=CF时,△CEM≌△CFN,
当点F沿D→C路径运动时,
10-t=7-2t,
解得,t=-3,不合题意,
当点F沿C→B路径运动时,
10-t=2t-7,
解得,t=,
当点F沿B→C路径运动时,
10-t=7-(2t-7×2),
解得,t=11,
∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,
∴0≤t≤10,
∴t=11时,已停止运动.
综上所述,当t=秒时,△CEM≌△CFN.
【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.
展开阅读全文