收藏 分销(赏)

数学八年级下册数学期末试卷中考真题汇编[解析版].doc

上传人:快乐****生活 文档编号:1724421 上传时间:2024-05-08 格式:DOC 页数:30 大小:875.04KB 下载积分:12 金币
下载 相关 举报
数学八年级下册数学期末试卷中考真题汇编[解析版].doc_第1页
第1页 / 共30页
数学八年级下册数学期末试卷中考真题汇编[解析版].doc_第2页
第2页 / 共30页


点击查看更多>>
资源描述
数学八年级下册数学期末试卷中考真题汇编[解析版] 一、选择题 1.使代数式有意义的x的取值范围是( ) A. B. C. D. 2.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.9,12,15 D.1,2, 3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是( ) A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C 4.某校劳动实践活动中,甲,乙两块试验田3次果蔬平均产量都是,方差分别是,,则这两块试验田3次果蔬产量较稳定的是( ) A.甲 B.乙 C.甲和乙一样稳定 D.不能确定 5.如图,在△ABC中,AC=6,AB=8,BC=10,点D是BC的中点,连接AD,分别以点A,B为圆心,CD的长为半径在△ABC外画弧,两弧交于点E,连接AE,BE.则四边形AEBC的面积为( ) A.30 B.30 C.24 D.36 6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD等于(  ) A.50° B.60° C.70° D.80° 7.如图,在平行四边形中,,以点为圆心,为半径画弧与交于点,然后以大于为半径,分别以,为圆心画弧交于点,连接交于点,若,,则的长为( ) A. B. C.5 D.10 8.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是( ) A. B.10 C. D.12 二、填空题 9.若函数在实数范围内有意义,则自变量的取值范围是______. 10.正方形的对角线长为,面积为______. 11.矩形ABCD的面积为48,一条边AB的长为6,则矩形的对角线_______. 12.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=10,BC=16,则EF的长是_______ 13.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长cm,写出挂重后的弹簧长度y(cm)与挂重 x(kg)之间的函数关系式并标明 x 的取值范围___________. 14.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).  15.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为 ________. 16.如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=__;CF=__;DE=__. 三、解答题 17.计算: (1); (2); (3); (4). 18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域. (1)海港C会受台风影响吗?为什么? (2)若台风的速度为20km/h,台风影响该海港持续的时间有多长? 19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图: (1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点. (2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点. (3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等. 20.如图,菱形ABCD的对角线AC和BD交于点O,点E在线段OB上(不与点B,点O重合),点F在线段OD上,且DF=BE,连接AE,AF,CE,CF. (1)求证:四边形AECF是菱形; (2)若AC=4,BD=8,当BE=3时,判断△ADE的形状,说明理由. 21.先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为﹐由于,,即:, ,所以, 问题: (1)填空:__________,____________﹔ (2)进一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,,即,﹐那么便有: __________. (3)化简:(请写出化简过程) 22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下: 甲店:购买电脑打八折; 乙店:先赠一台电脑,其余电脑打九折优惠. 设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元). (1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式; (2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算? 23.在中,,,将沿方向平移得到,,的对应点分别是、,连接交于点. (1)如图1,将直线绕点顺时针旋转,与、、分别相交于点、、,过点作交于点. ①求证:≌ ②若,求的长; (2)如图2,将直线绕点逆时针旋转,与线段、分别交于点、,在旋转过程中,四边形的面积是否发生变化?若不变,求出四边形的面积,若变化,请说明理由; (3)在(2)的旋转过程中,能否为等腰三角形,若能,请直接写出的长,若不能,请说明理由. 24.直线:交x轴于A,交y轴于B. (1)求的长; (2)如图1,直线关于y轴对称的直线交x轴于点C,直线:经过点C,点D、T分别在直线、上.若以A、B、D、T为顶点的四边形是平行四边形,求点D的坐标; (3)如图2,平行y轴的直线交x轴于点E,将直线向上平移5个单位长度后交x轴于M,交y轴于N,交直线于点P.点在四边形内部,直线交于G,直线交于H,求的值. 25.如图1,四边形是正方形,点在边上任意一点(点不与点,点重合),点在的延长线上,. (1)求证:; (2)如图2,作点关于的对称点,连接、、,与交于点,与交于点.与交于点. ①若,求的度数; ②用等式表示线段,,之间的数量关系,并说明理由. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据二次根式的被开方数大于或等于0即可得出答案. 【详解】 解:∵代数式有意义, ∴x-1≥0. ∴x≥1. 故选:C. 【点睛】 本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数大于或等于0是解决本题的关键. 2.A 解析:A 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形. 【详解】 解:A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意; B、72+242=252,符合勾股定理的逆定理,故本选项不符合题意; C、92+122=152,符合勾股定理的逆定理,故本选项不符合题意; D、12+22=()2,符合勾股定理的逆定理,故本选项不符合题意. 故选:A. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.A 解析:A 【解析】 【分析】 根据平行四边形的判定方法,逐项判断即可. 【详解】 解:A、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形; B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形; C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形; D、∵AB∥CD, ∴∠A+∠D=180°, ∵∠A=∠C, ∴∠C+∠D=180°, ∴AD∥BC, ∴四边形ABCD为平行四边形; 故选:A. 【点睛】 本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键. 4.A 解析:A 【解析】 【分析】 根据两组数据的平均数相同,则方差小的更稳定即可求解. 【详解】 甲,乙两块试验田3次果蔬平均产量都是,方差分别是,, 这两块试验田3次果蔬产量较稳定的是:甲. 故选A 【点睛】 本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键. 5.D 解析:D 【分析】 根据勾股定理的逆定理求出,求出,根据菱形的判定求出四边形是菱形,根据菱形的性质求出,求出,再求出四边形的面积即可. 【详解】 解:,,, , 是直角三角形, 即, 点是的中点,, , 即, 四边形是菱形, , , 四边形的面积是, 故选:D. 【点睛】 本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出是解此题的关键,注意:①如果一个三角形的两边、的平方和等于第三边的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等. 6.D 解析:D 【解析】 【分析】 连接BF,根据菱形的性质得出△ADF≌△ABF,从而得到∠ABF=∠ADF,然后结合垂直平分线的性质推出∠ABF=∠BAC,即可得出结论. 【详解】 解:如图,连接BF, ∵四边形ABCD是菱形,∠BAD=80°, ∴AD=AB,∠DAC=∠BAC=∠BAD=40°, 在△ADF和△ABF中, ∴△ADF≌△ABF(SAS), ∴∠ABF=∠ADF, ∵AB的垂直平分线交对角线AC于点F,E为垂足, ∴AF=BF, ∴∠ABF=∠BAC=40°, ∴∠DAF=∠ADF=40°, ∴∠CFD=∠ADF+∠DAF=80°. 故选:D. 【点睛】 本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键. 7.B 解析:B 【解析】 【分析】 设交于点,连接,根据作图可得四边形是菱形,进而勾股定理求解即可. 【详解】 设交于点,连接, 由作图可知,,, 四边形是平行四边形, , , , ∴AB=BE, , 四边形是平行四边形, 又, 四边形是菱形, ,,, , , 在中,, , . 故选B. 【点睛】 本题考查了角平分线作图,菱形的性质与判定,平行四边形的性质,等角对等边,勾股定理,理解题意证明四边形是菱形是解题的关键. 8.B 解析:B 【解析】 【分析】 点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″. 【详解】 解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″, ∵直线AB的解析式为y=-x+7, ∴直线CC″的解析式为y=x-1, 由 解得, ∴直线AB与直线CC″的交点坐标为K(4,3), ∵K是CC″中点,C(1,0), 设C″坐标为(m,n), ∴,解得: ∴C″(7,6). 连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小, △DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″= 故答案为10. 【点睛】 本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长. 二、填空题 9. 【解析】 【分析】 根据二次根式有意义的条件:被开方数大于或等于0列不等式即可求解. 【详解】 解:因为在实数范围内有意义, 所以, 解得:. 故答案为:. 【点睛】 本题主要考查二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件. 10.1 【解析】 【分析】 根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可. 【详解】 解:四边形为正方形, ,, 正方形的面积, 故答案为:1. 【点睛】 本题考查正方形的性质,解题关键是掌握正方形的对角线相等且垂直,且当四边形的对角线互相垂直时面积等于对角线乘积的一半,比较容易解答. 11.A 解析:10 【解析】 【分析】 先根据矩形面积公式求出AD的长,再根据勾股定理求出对角线BD即可. 【详解】 解:∵矩形ABCD的面积为48,一条边AB的长为6, ∴AD=48÷6=8, ∴对角线BD=, 故答案为10. 【点睛】 本题主要考查了勾股定理的应用,解决此题的关键是根据矩形面积求出另一边的长. 12.D 解析:3 【分析】 由题意,直角三角形斜边上的中线等于斜边的一半,中位线等于的一半,相减即可求得 【详解】 点D,E分别是边AB,AC的中点, BC=16 ∠AFB=90°,且AB=10,点D是边AB的中点, 故答案为:3 【点睛】 本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,熟悉以上性质是解题的关键. 13. 【分析】 根据函数的概念:函数中的每个值,变量按照一定的法则有一个确定的值与之对应,解答即可. 【详解】 解:设挂重为,则弹簧伸长为, 挂重后弹簧长度与挂重之间的函数关系式是:. 故答案为:. 【点睛】 本题考查了根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式. 14.A 解析:AC⊥BC或∠AOB=90°或AB=BC(填一个即可). 【详解】 试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形. 考点:菱形的判定. 15.(2,2) 【分析】 先用待定系数法求得直线AB的解析式,再求得点C的坐标,由此可得正方形的边长,可求得点E和点D的坐标,再根据平移可得点E的对应点的纵坐标,进而求得点E的对应点的坐标,从而可求得答 解析:(2,2) 【分析】 先用待定系数法求得直线AB的解析式,再求得点C的坐标,由此可得正方形的边长,可求得点E和点D的坐标,再根据平移可得点E的对应点的纵坐标,进而求得点E的对应点的坐标,从而可求得答案. 【详解】 解:设直线AB的解析式为y=kx+b, ∵顶点A,B的坐标分别为(﹣2,6)和(7,0). ∴, ∴, ∴y=﹣x+, ∵∠ACB=90°,边BC在x轴上, ∴C点的坐标为(﹣2,0), ∴正方形OCDE的边长为2, ∴E(0,2),D(﹣2,2), 设点E沿x轴平移后落在AB边上的坐标为(a,2), 则点D沿x轴平移后的对应点的坐标为(a﹣2,2), ∵y=﹣x+, ∴2=﹣a+, ∴a=4, ∴a﹣2=2, ∴当点E落在AB边上时,点D的坐标为(2,2), 故答案为:(2,2). 【点睛】 本题考查了待定系数法求函数关系式,正方形的性质,坐标与图形性质,根据向右平移可得对应点的纵坐标不变是解题的关键. 16.4 5 【分析】 先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x 解析:4 5 【分析】 先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x, EC=8−x,然后在 RtΔECF中根据勾股定理得到42+(8−x)2=x2 ,再解方程即可得到DE的长. 【详解】 解:根据折叠可得AF=AD=10, ∵四边形ABCD是矩形, ∴BC=AD=10, 在Rt△ABF中, AB2+FB2=AF2, ∴FB=6. ∴FC=10﹣6=4, 设DE=x,则EF=x,EC=8﹣x, 在Rt△ECF中,∵CE2+FC2=EF2, ∴42+(8﹣x)2=x2, 解得x=5. 则DE=5. 故答案为:10,4,5. 【点睛】 本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 三、解答题 17.(1)2;(2)3;(3)143;(4) 【分析】 (1)将二次根式化简合并进行计算即可; (2)将二次根式有理化进行计算即可; (3)根据平方差公式化简计算即可; (4)先将二次根式、绝对值、负指 解析:(1)2;(2)3;(3)143;(4) 【分析】 (1)将二次根式化简合并进行计算即可; (2)将二次根式有理化进行计算即可; (3)根据平方差公式化简计算即可; (4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可. 【详解】 (1), (2), (3), (4) 【点睛】 本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键. 18.(1)会,理由见解;(2)7h 【分析】 (1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响; (2)利用勾股定理得出ED以及EF的长 解析:(1)会,理由见解;(2)7h 【分析】 (1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响; (2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间. 【详解】 解:(1)如图所示,过点C作CD⊥AB于D点, ∵AC=300km,BC=400km,AB=500km, ∴, ∴△ABC为直角三角形, ∴, ∴, ∴, ∵以台风中心为圆心周围250km以内为受影响区域, ∴海港C会受到台风影响; (2)由(1)得CD=240km, 如图所示,当EC=FC=250km时,即台风经过EF段时,正好影响到海港C, 此时△ECF为等腰三角形, ∵, ∴EF=140km, ∵台风的速度为20km/h, ∴140÷20=7h, ∴台风影响该海港持续的时间有7h. 【点睛】 本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答. 19.(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2) 解析:(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD. (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可. 【详解】 解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD; (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等. 【点睛】 本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键. 20.(1)见解析;(2)直角三角形,理由见解析 【分析】 (1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可; (2)根据菱形的性质求出AO=2,BO= 解析:(1)见解析;(2)直角三角形,理由见解析 【分析】 (1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可; (2)根据菱形的性质求出AO=2,BO=DO=4,求出OE和DE,根据勾股定理求出AD2=20,AE2=5,求出AD2+AE2=DE2,再根据勾股定理的逆定理求出答案即可. 【详解】 解:(1)证明:∵四边形ABCD是菱形, ∴AC⊥BC,AO=CO,BO=DO, ∵BE=DF,BO=DO, ∴BO﹣BE=DO﹣DF, 即OE=OF, ∵AO=CO, ∴四边形AECF是平行四边形, ∵AC⊥BD, ∴四边形AECF是菱形; (2)解:△ADE是直角三角形, 理由是:∵AC=4,BD=8,AO=CO,BO=DO, ∴AO=2,BO=DO=4, ∵BE=3, ∴OE=4﹣3=1,DE=DO+OE=4+1=5, 在Rt△AOD中,由勾股定理得:AD2=AO2+DO2=22+42=20, 在Rt△AOE中,由勾股定理得:AE2=AO2+OE2=22+12=5, ∵DE2=52=25, ∴AD2+AE2=DE2, ∴∠DAE=90°, 即△ADE是直角三角形. 【点睛】 本题考查了菱形的性质和判定,平行四边形的判定,勾股定理,勾股定理的逆定理等知识点,能熟记菱形的性质和判定是解此题的关键. 21.(1),;(2);(3) 【解析】 【分析】 (1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果; (3)将写成,4 解析:(1),;(2);(3) 【解析】 【分析】 (1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果; (3)将写成,4写成,就可以凑成完全平方的形式进行计算. 【详解】 解:(1); ; (2); (3)==. 【点睛】 本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则. 22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合 解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算 【分析】 (1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元); (2)根据(1)的结论列方程或不等式解答即可. 【详解】 解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15); y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15); (2)当3840x=4320x﹣4320时, 解得x=9, 即当购买9台电脑时,到两家商店购买费用相同; 当3840x<4320x﹣4320时, 解得x>9, 即当10≤x≤15时,到甲商店更合算; 当3840x>4320x﹣4320时, 解得x<9, 即当6≤x≤8时,到乙商店更合算. 【点睛】 本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键. 23.(1)①见解析;②2;(2)不变,12;(3)能,或6或 【分析】 (1)①由平移的特征可以推出三角形全等的条件,证明△IBC≌△HCE; ②由①得IC=HE,再证明四边形ICHG是平行四边形,得I 解析:(1)①见解析;②2;(2)不变,12;(3)能,或6或 【分析】 (1)①由平移的特征可以推出三角形全等的条件,证明△IBC≌△HCE; ②由①得IC=HE,再证明四边形ICHG是平行四边形,得IC=GH,再证明△DFG≌△CFI,得DG=IC,于是得DG=GH=HE=DE=AC,可求出DG的长; (2)由平行四边形的性质可证明线段相等和角相等,证明△AOP≌△COQ,将四边形ABQP的面积转化为△ABC的面积,说明四边形ABQP的面积不变,求出△ABC的面积即可; (3)按OP=OA、PA=OA、OP=AP分类讨论,分别求出相应的PQ的长,其中,当PA=OA时,作OL⊥AP于点L,构造直角三角形,用面积等式列方程求OL的长,再用勾股定理求出OP的长即可. 【详解】 (1)证明:①如图1, ∵是由平移得到的, ∴ , ∴, ∵, ∴ ∴≌ ②如图1, 由①可知:≌ , ∴, ∵,, ∴CIGH,CHGH, ∴四边形是平行四边形, ∴ , ∵ , ∴ ∵ , , ∴≌, ∴, ∴, ∴. (2)面积不变;如图2: 由平移可知,, ∴四边形是平行四边形, ∴, ∵, ∴ , ∵, ∴≌ , ∴, , ∴四边形ABQP的面积不变. ∵ , ∴, ∴ , 在中 ∴, ∴, ∴ (3)如图3,OP=OA=3, 由(2)得,△AOP≌△COQ, ∴OQ=OP=3, ∴PQ=3+3=6; 如图4,PA=OA=3,作OL⊥AP于点L,则∠OLA=∠OLP=90°, 由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°, ∴OD=OB=4,∠AOD=180°−∠AOB=90°, ∵AO⊥BD,OD=OB, ∴AO垂直平分BD, ∴AD=AB=5, 由AD•OL=OA•OD= 得, ×5OL=×3×4, 解得,OL= , ∴ , ∴ , ∴ , ∴PQ=2OP=; 如图5,OP=AP, ∵AD=AB,AC⊥BD, ∴∠DAC=∠BAC, ∴∠POA=∠DAC=∠BAC, ∴PQAB, ∵APBQ, ∴四边形ABQP是平行四边形, ∴PQ=AB=5, 综上所述,或6或. 【点睛】 此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题. 24.(1);(2)点D的坐标为或或;(3). 【解析】 【分析】 (1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度; (2)根 解析:(1);(2)点D的坐标为或或;(3). 【解析】 【分析】 (1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度; (2)根据直线和直线关于y轴对称求出直线的解析式,再求出直线的解析式,根据点D在直线上,可设点,然后分类讨论点D是在线段BC上,还是在线段BC的延长线上,或者在线段CB的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m的式子表示点T的坐标,再根据点T在直线上求出m的值,即可求出点D的坐标; (3)根据平移的性质求出直线MN的解析式,再结合直线x=2求出点,点和点,进而求出ME的长度,然后再结合点求出直线和直线,进而求出点和,即可得到GE与HE的长度,最后再代入计算即可. 【详解】 解:(1)∵直线交x轴于A,交y轴于B, ∴,. ∴,. ∴,. ∴,. ∴,. ∵, ∴. (2)∵直线关于y轴对称的直线交x轴于点C,直线交x轴与点, ∴点A与点C关于y轴对称. ∴. ∵点在y轴上, ∴直线经过点B. ∴设直线. ∵直线经过点, ∴. 解得:. ∴直线. ∵直线经过点, ∴. 解得:. ∴直线. ∵点D在直线上, ∴设点. ①如下图所示,当点D在线段上时. ∵四边形ABDT是平行四边形, ∴. ∴BD经过平移之后到达AT. ∴. ∵点T在直线上, ∴,解得. ∴; ②如下图所示,当点D在线段的延长线上时. ∵四边形ABTD是平行四边形, ∴. ∴AD经过平移之后到达BT. ∴. ∵点T在直线上, ∴,解得. ∴; ③如下图所示,当点D在线段的延长线上时. ∵四边形ADBT是平行四边形, ∴. ∴BD经过平移之后到达TA. ∴. ∵点T在直线上, ∴,解得. ∴. 综上所述,点D的坐标为或或. (3)直线向上平移5个单位长度得到的直线解析式为. ∵直线x=2与x轴交于点E,与直线MN交于点P,直线MN交x轴于点M, ∴,,. ∴,. ∴,. ∴,. ∴, 设直线的解析式为, ∵直线PF经过点与, ∴解得 ∴直线的解析式为. ∵直线PF与x轴交于点G, ∴. ∴. 解得:. ∴. ∴. 设直线OF的解析式为y=cx, ∵直线OF经过点, ∴. 解得:. ∴直线的解析式为. ∵直线OF与直线交于点H. ∴. ∴. ∴. ∴. ∴. 【点睛】 本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键. 25.(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析 【分析】 (1)证△CBE≌△CDF(SAS),即可得出结论; (2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再 解析:(1)见解析;(2)①45°;②GH2+BH2=2CD2,理由见解析 【分析】 (1)证△CBE≌△CDF(SAS),即可得出结论; (2)①证△DCP≌△GCP(SSS),得∠DCP=∠GCP,再由全等三角形的性质得∠BCE=∠DCP=∠GCP=20°,则∠BCG=130°,然后由等腰三角形的性质和三角形内角和定理得∠CGH=25°,即可求解; ②连接BD,由①得CP垂直平分DG,则HD=HG,∠GHF=∠DHF,设∠BCE=m°,证出∠GHF=∠CHB=45°,再证∠DHB=90°,然后由勾股定理得DH2+BH2=BD2,进而得出结论. 【详解】 (1)证明:∵四边形ABCD是正方形, ∴CB=CD,∠CBE=∠CDF=90°, 在△CBE和△CDF中, , ∴△CBE≌△CDF(SAS), ∴CE=CF; (2)解:①点D关于CF的对称点G, ∴CD=CG,DP=GP, 在△DCP和△GCP中, , ∴△DCP≌△GCP(SSS), ∴∠DCP=∠GCP, 由(1)得:△CBE≌△CDF, ∴∠BCE=∠DCP=∠GCP=20°, ∴∠BCG=20°+20°+90°=130°, ∵CG=CD=CB, ∴∠CGH=, ∴∠CHB=∠CGH+∠GCP=25°+20°=45°; ②线段CD,GH,BH之间的数量关系为:GH2+BH2=2CD2,理由如下: 连接BD,如图2所示: 由①得:CP垂直平分DG, ∴HD=HG,∠GHF=∠DHF, 设∠BCE=m°, 由①得:∠BCE=∠DCP=∠GCP=m°, ∴∠BCG=m°+m°+90°=2m°+90°, ∵CG=CD=CB, ∴∠CGH=, ∴∠CHB=∠CGH+∠GCP=45°−m°+m°=45°, ∴∠GHF=∠CHB=45°, ∴∠GHD=∠GHF+∠DHF=45°+45°=90°, ∴∠DHB=90°, 在Rt△BDH中,由勾股定理得:DH2+BH2=BD2, ∴GH2+BH2=BD2, 在Rt△BCD中,CB=CD, ∴BD2=2CD2, ∴GH2+BH2=2CD2. 【点睛】 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、勾股定理以及三角形内角和定理等知识;本题综合性强,熟练掌握正方形的性质,证明△CBE≌△CDF和△DCP≌△GCP是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服