资源描述
人教版八年级数学下册期末试卷测试卷(解析版)
一、选择题
1.使代数式有意义的负整数之积是( )
A.−3 B.3 C.2 D.−2
2.以下列各数为边长,能构成直角三角形的是( )
A.5,11,12 B.9,15,17 C.1,,2 D.,,
3.在四边形ABCD中,对角线AC与BD交于点O,下列条件一定能判定四边形ABCD为平行四边形的是( )
A.AD∥BC,AB=CD B.AO=OC,BO=OD
C.AD=CB,AB∥CD D.∠A=∠B,∠C=∠D
4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,,则甲、乙两个同学的数学成绩比较稳定的是( )
A.甲 B.乙 C.甲和乙一样 D.无法确定
5.如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( )
A.24米2 B.36米2 C.48米2 D.72米2
6.如图,矩形纸片ABCD中,AB=6,BC=8.现将其沿AE对折,使得点B落在边AD上的点F处,折痕与边BC交于点E,则CF的长为( )
A.3 B.2 C.8 D.10
7.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC'交AD于E,AD=8,AB=4,则DE的长为( )
A.3 B.4 C.5 D.6
8.A,B两地相距20,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 ()与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
9.化简:______
10.如图,菱形的对角线、相交于点,点、分别为边、的中点,连接,若,,则菱形的面积为______.
11.如图,在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面 S1+S2+S3 的值为_______.
12.如图,在矩形ABCD中,BE交AD于点E且平分∠ABC,对角线BD平分∠EBC,则的值为____.
13.某一次函数的图象经过点(2,-3),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式_____________________.
14.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).
15.如图,在平面直角坐标系中,点A1,A2,A3,…,都在x轴正半轴上,点B1,B2,B3,…,都在直线y=kx上,∠B1OA1=30°,△A1B1A2,△A2B2A3,△A3B3A4,…,都是等边三角形,且OA1=1,则点B6的纵坐标是_________.
16.如图所示,将矩形ABCD沿直线AE折叠(点E在边CD上),折叠后顶点D恰好落在边BC上的点F处,若AD=5,AB=4,则EC的长是_____.
三、解答题
17.计算:
(1)﹣4;
(2)(2﹣)2×(6+4).
18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即尺,则此时秋千的踏板离地的距离就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.
19.如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:
(1)做线段,使其长度为;
(2)通过计算说明是直角三角形.
20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,AB=8,AC=6,求BF的长.
21.[观察]请你观察下列式子的特点,并直接写出结果:
;
;
;
……
[发现]根据你的阅读回答下列问题:
(1)请根据上面式子的规律填空:
(为正整数);
(2)请证明(1) 中你所发现的规律.
[应用]请直接写出下面式子的结果:
.
22.为了做好开学准备,某校共购买了20桶A、B两种桶装消毒液,进行校园消杀,以备开学.已知A种消毒液300元/桶,每桶可供2000米2的面积进行消杀,B种消毒液200元/桶,每桶可供1000米2的面积进行消杀.
(1)设购买了A种消毒液x桶,购买消毒液的费用为y元,写出y与x之间的关系式,并指出自变量x的取值范围;
(2)在现有资金不超过5300元的情况下,求可消杀的最大面积.
23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
24.将一矩形纸片放在平面直角坐标系中,为原点,点在轴上,点在轴上,,.如图1在边上取一点,将沿折叠,使点恰好落在边上,记作点:
(1)求点的坐标及折痕的长;
(2)如图2,在、边上选取适当的点、,将沿折叠,使点落在上,记为点,设,四边形的面积为.求:与之间的函数关系式;
(3)在线段上取两点、(点在点的左侧),且,求使四边形的周长最短的点、点的坐标.
25.如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.
(1)证明:;
(2)当时,六边形周长的值是否会发生改变,请说明理由;
(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.
26.如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
【参考答案】
一、选择题
1.C
解析:C
【分析】
先根据二次根式和分式有意义的条件求出x的取值范围,然后求出满足题意的负整数的积即可.
【详解】
解:∵有意义,
∴,
解得,
∴满足题意的负整数解为-2,-1,
∴负整数解的积=,
故选C.
【点睛】
本题主要考查了分式有意义的条件,二次根式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.
2.C
解析:C
【分析】
以两个较小数为两个直角边的边长,较大数为斜边的边长,验证四个选项是否满足勾股定理的逆定理即可.
【详解】
解:A选项,,故A选项不符合题意;
B选项, ,故B选项不符合题意;
C选项, ,故C选项符合题意;
D选项, ,故D选项不符合题意.
故选C.
【点睛】
本题考查了勾股定理的逆定理,熟练掌握以上知识点是解题关键.
3.B
解析:B
【解析】
【分析】
由平行四边形的判定方法分别对各个选项进行判断即可.
【详解】
A、由AD∥BC,AB=CD,不能判定四边形ABCD为平行四边形,故选项A不符合题意;
B、∵AO=OC,BO=OD,
∴四边形ABCD为平行四边形,
故选项B符合题意;
C、由AD=CB,AB∥CD,不能判定四边形ABCD为平行四边形,故选项C不符合题意;
D、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项D不符合题意;
故选:B.
【点睛】
本题考查了平行四边形的判定,关键是掌握平行四边形的各种判定方法.
4.A
解析:A
【解析】
【分析】
平均成绩相同情况下,方差越小越稳定即可求解.
【详解】
解:∵甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,
方差分别是,,,
∴甲同学的数学成绩比较稳定.
故选择A.
【点睛】
本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键.
5.B
解析:B
【分析】
连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积.
【详解】
连接AC,则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以∠ACD=90°.
这块草坪的面积=SRt△ABC+SRt△ACD=AB•BC+AC•DC=(3×4+5×12)=36米2.
故选B.
【点睛】
此题主要考查了勾股定理的运用及直角三角形的判定等知识点.
6.B
解析:B
【解析】
【分析】
先根据折叠性质可证四边形为正方形,,然后根据 可得到的值,最后根据勾股定理即可求出 的长.
【详解】
∵,,
∴四边形为矩形.
∵,
∴四边形为正方形,
∴,
∴,
∴在中,.
故选:.
【点睛】
本题考查了折叠的性质,矩形和正方形的判定及性质,根据正方形的判定证明四边形是正方形是解题的关键.
7.C
解析:C
【解析】
【分析】
根据折叠前后角相等可知△ABE≌△C'ED,利用勾股定理可求出.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,∠C=∠A=90°
由折叠的性质可得:C'D=CD=AB;∠C'=∠C=∠A
在△ABE与△C'ED中
∴△ABE≌△C'ED(AAS)
∴DE=BE
设DE=BE=x,则AE=8-x,AB=4,在直角三角形ABE中,
解得x=5
故选C.
【点睛】
本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.
8.A
解析:A
【分析】
根据题意结合图象依次判断即可.
【详解】
①甲始终是匀速行进,乙的行进不是匀速的,正确;
②乙用了4个小时到达目的地,错误;
③乙比甲先出发1小时,错误;
④甲在出发4小时后被乙追上,错误,
故选:A.
【点睛】
此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.
二、填空题
9.-1
【解析】
【分析】
根据二次根式有意义的条件,求出的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.
【详解】
由可知,
,
,
故答案为:.
【点睛】
本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.
10.A
解析:
【解析】
【分析】
根据MN是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的性质求解.
【详解】
解:∵M、N是AB和BC的中点,即MN是△ABC的中位线,
∴AC=2MN=2,
∵,
所以菱形的面积为 ,
故答案为:
【点睛】
本题考查了三角形的中位线定理和菱形的性质,理解中位线定理求的AC的长是关键.
11.A
解析:200
【解析】
【分析】
根据正方形的面积公式和勾股定理,即可得到阴影部分的面积S1+S2+S3的值.
【详解】
解:∵∠ACB=90°,AC=6,BC=8,
∴AB2=AC2+BC2=62+82=100
∴S1+S2+S3=AC2+BC2 +AB2=62+82+100=200
故答案为:200
【点睛】
本题考查勾股定理,解题关键是将勾股定理和正方形的面积公式进行结合应用.
12.
【分析】
先证明是等腰直角三角形,再证明可得结论.
【详解】
解:矩形,
,,
,
平分,
,
,
平分,
,
,
,
,
,
故答案为:.
【点睛】
本题考查了矩形的性质,勾股定理,等腰直角三角形的性质和判定等知识,关键是证明是等腰直角三角形解答.
13.(答案不唯一)
【分析】
根据题意,写出一个且经过的解析式即可
【详解】
函数y随x的增大而增大
图象经过点(2,-3)
例如:(答案不唯一)
【点睛】
本题考查了一次函数的性质,一次函数的定义,理解一次函数的性质是解题的关键.
14.C
解析:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).
【分析】
根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.
【详解】
解:根据题意可得出:四边形CBFE是平行四边形,
当CB=BF时,平行四边形CBFE是菱形,
当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.
故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.
【点睛】
此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.
15.【分析】
设△BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn=
解析:
【分析】
设△BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn=OAn,列出部分an的值,发现规律an+1=2an,依此规律结合等边三角形的性质即可得出结论.
【详解】
设△BnAn An+1的边长为an,点B1,B2,B3,…是直线y= 上的第一象限内的点,
过A1作A1M⊥x轴交直线OB1于M点,
∵OA1=1,
∴点M的横坐标为1,
∵∠MOA1=30°,
∴OM=2A1M
在Rt△OMA1中,由勾股定理(2A1M)2=A1M2+1
解得A1M=
∴点M的坐标为(1,)
点M在y= 上,
∴=
∵∠A1OB1 = 30°,
又△BnAnAn+1为等边三角形,
∴∠BnAnAn+1 = 60°,
∴∠OBnAn = ∠BnAnAn+1 -∠BnOAn=30°,
∴AnBn = OAn,
∵OA1=1,
∴a1 =1,
a2=1+1=2= 2a1,
a3= 1+a1 +a2=4= 2a2,
a4 = 1+a1 +a2十a3 =8= 2a3,
an+1 = 2an,
a5 =2a4= 16, a6 = 2a5 = 32,a7= 2a6= 64,
∵△A6B6A7为等边三角形,
∴点B6的坐标为(a7-a6,(a7- a6)),
∴点B6的坐标为(48,16)
故答案为:16.
【点睛】
本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,勾股定理,解题的关键是找出规律:an+1=2an本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.
16.5
【分析】
由折叠可得,.再由矩形性质结合勾股定理即可求出BF的长,从而求出CF的长.设,则,在中,利用勾股定理列出关于x的等式,解出x即可.
【详解】
解:由折叠可知,,
∵四边形ABCD是矩形
解析:5
【分析】
由折叠可得,.再由矩形性质结合勾股定理即可求出BF的长,从而求出CF的长.设,则,在中,利用勾股定理列出关于x的等式,解出x即可.
【详解】
解:由折叠可知,,
∵四边形ABCD是矩形,
∴在中,,
∴.
设,则,
∴在中,,即,
解得:.
故EC的长为1.5.
故答案为1.5.
【点睛】
本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.
三、解答题
17.(1)2;(2)4
【分析】
(1)根据二次根式的混合运算法则计算即可;
(2)根据完全平方公式以及平方差公式计算即可.
【详解】
解:(1)原式=﹣4
=﹣4
=6﹣4
=2;
(2)原式=(4﹣
解析:(1)2;(2)4
【分析】
(1)根据二次根式的混合运算法则计算即可;
(2)根据完全平方公式以及平方差公式计算即可.
【详解】
解:(1)原式=﹣4
=﹣4
=6﹣4
=2;
(2)原式=(4﹣4+2)×(6+4)
=(6﹣4)×(6+4)
=36﹣32
=4.
【点睛】
本题考查了二次根式的混合运算,乘法公式的运用,熟练掌握相关运算法则是解本题的关键.
18.绳索OA的长为14.5尺.
【分析】
设绳索OA的长为x尺,根据题意知,可列出关于 的方程,即可求解.
【详解】
解:由题意可知: 尺,
设绳索OA的长为x尺,根据题意得
,
解得.
答:绳索OA的
解析:绳索OA的长为14.5尺.
【分析】
设绳索OA的长为x尺,根据题意知,可列出关于 的方程,即可求解.
【详解】
解:由题意可知: 尺,
设绳索OA的长为x尺,根据题意得
,
解得.
答:绳索OA的长为14.5尺.
【点睛】
本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.
19.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据网格特点和勾勾定理作图即可;
(2)根据勾股定理及其逆定理解答即可;
【详解】
解:(1)如图,
AD=;
(2)∵,,,
∴,
∴是直角
解析:(1)见解析;(2)见解析
【解析】
【分析】
(1)根据网格特点和勾勾定理作图即可;
(2)根据勾股定理及其逆定理解答即可;
【详解】
解:(1)如图,
AD=;
(2)∵,,,
∴,
∴是直角三角形.
【点睛】
本题考查了勾股定理及其逆定理,熟练掌握定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之亦成立.
20.(1)见解析;(2)
【分析】
(1)由“AAS”可证△AFE≌△DBE,可得AF=BD=DC;
(2)先证四边形AOFH是矩形,可得AH=FO=4,AO=FH=3,再在直角三角形FHB中,由勾股定
解析:(1)见解析;(2)
【分析】
(1)由“AAS”可证△AFE≌△DBE,可得AF=BD=DC;
(2)先证四边形AOFH是矩形,可得AH=FO=4,AO=FH=3,再在直角三角形FHB中,由勾股定理可求解.
【详解】
证明:(1)∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在和中
,
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC;
(2)解:如图,连接DF交AC于点O,过点F作FH⊥AB,交BA的延长线于H,
∵AF∥BC,AF=CD,
∴四边形ADCF是平行四边形,
∵AB⊥AC,AD是中线,
∴AD=CD,
∴四边形ADCF是菱形,
∴AC⊥DF,AO=CO=3,OF=OD=DF,
∵AF∥BC,AF=BD,
∴四边形AFDB是平行四边形,
∴DF=AB=8,
∴OF=OD=4,
∵FH⊥AB,AB⊥AC,AC⊥DF,
∴四边形AOFH是矩形,
∴AH=FO=4,AO=FH=3,
∴,
∵FH⊥AB,
∴三角形FHB是直角三角形,
∴在中,根据勾股定理,
.
【点睛】
本题考查了全等三角形的判定与性质,平行四边形的判定,菱形的判定,矩形的判定,直角三角形的性质,勾股定理,考查知识点较多,综合性较强,解题的关键是要掌握并灵活运用这些知识点.
21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.
【解析】
【分析】
(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;
(2)运
解析:[观察],,;[发现](1)或;(2)证明见解析;[应用]或.
【解析】
【分析】
(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;
(2)运用(1)中发现规律,进行计算即可.
【详解】
[观察],,,
[发现](1)或
(2)左
∵为正整数,
∴
∴左右
[应用]
∴答案为:或.
【点睛】
(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;
(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.
22.(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.
【分析】
(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;
(2)根据现有资金不超过5300元,
解析:(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.
【分析】
(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;
(2)根据现有资金不超过5300元,可以求得x的取值范围,再根据题意,可以得到消杀面积与x的函数关系式,然后根据一次函数的性质,即可得到可消杀的最大面积.
【详解】
解:(1)由题意可得,
y=300x+200(20﹣x)=100x+4000,
即y与x之间的关系式为y=100x+4000(0<x<20且x为整数);
(2)∵现有资金不超过5300元,
∴100x+4000≤5300,
解得,x≤13,
设可消杀的面积为S米2,
S=2000x+1000(20﹣x)=1000x+20000,
∴S随x的增大而增大,
∴当x=13时,S取得最大值,此时S=33000,
即可消杀的最大面积是33000米2.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
23.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得
解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;
(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;
(3)方法1:先判断出最大时,的面积最大,进而求出,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出最大时,的面积最大,而最大是,即可得出结论.
【详解】
解:(1)点,是,的中点,
,,
点,是,的中点,
,,
,,
,
,
,
,
,
,
,
,
,
,
故答案为:,;
(2)是等腰直角三角形.
由旋转知,,
,,
,
,,
利用三角形的中位线得,,,
,
是等腰三角形,
同(1)的方法得,,
,
同(1)的方法得,,
,
,
,
,
,
,
是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,
最大时,的面积最大,
且在顶点上面,
最大,
连接,,
在中,,,
,
在中,,,
,
.
方法2:由(2)知,是等腰直角三角形,,
最大时,面积最大,
点在的延长线上,
,
,
.
【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.
24.(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(
解析:(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(2)过点作于,则,从而在中可用表示出的长,利用梯形的面积公式可用表示出,点与点重合时是取得最大值的点,
(3)以、、为顶点作平行四边形,作出点关于轴对称点,则易得到的坐标,的坐标,然后利用待定系数法求出直线的解析式,令,得,确定点坐标,也即可得到点坐标.
【详解】
解:(1)四边形为矩形,
,,
沿折叠,使点恰好落在边点上,
,,
在中,,,
,
,
点坐标为;
在中,设,则,
,解得,
在中,
;
(2)过点作于,则,
沿折叠得到,
,故可表示为,
在中,,即,
解得:,
,即,
点与点重合点与点重合、点与点重合分别是点的两个极限,
点与点重合时,由①的结论可得,此时,
点与点重合时,,
综上可得:,.
(3)以、、为顶点作平行四边形,作出点关于轴对称点,如图:
的坐标为,,
的坐标为,
设直线的解析式为,
把,代入得
,,
解得,,
直线的解析式为,
令,得,解得,
,.
【点睛】
本题考查了折叠的性质、矩形的性质及最短路径的知识,综合性较强,难度较大,注意掌握折叠前后两图形全等,即对应线段相等,对应角相等,在求自变量范围的时候,要注意寻找极限点,不要想当然的判断.
25.(1)见解析;(2)不变,见解析;(3)能,或
【分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由
解析:(1)见解析;(2)不变,见解析;(3)能,或
【分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.
【详解】
解:折叠后落在上,
平分
,
四边形为菱形,同理四边形为菱形,
四边形为平行四边形,
.
不变.
理由如下:由得
四边形为菱形,
为等边三角
,
为定值.
记与交于点.
当六边形的面积为时,
由得
记与交于点
,
同理
即
化简得
解得,
∴当或时,六边形的面积为.
【点睛】
此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.
26.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形
解析:(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE2+OE2=OB2.
∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.
在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.
∴(BE+DF)2+EF2=2AB2;
(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,
理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM2+DM2=BD2,
∴(BE+EM)2+DM2=BD2.
即(BE+DF)2+EF2=2AB2;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)2+PE2=2AB2.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+2PD=4 ,
∴2BE+2PD=4,即BE+PD=2,
∵AB=4,
∴(2)2+PE2=2×42,
解得,PE=2,
∴BE=2,
∴PD=2﹣2.
【点睛】
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
展开阅读全文