1、人教版七年级数学下册期末综合复习试卷一、选择题1如图,下列各组角中是同位角的是()A1和2B3和4C2和4D1和42在下列图形中,不能通过其中一个三角形平移得到的是( )ABCD3若点在轴上,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,点在的延长线上,能证明是( )ABCD6下列说法错误的是( )A的平方根是B的值是C的立方根是D的值是7如图,已知直线,点为直线上一点,为射线上一点若,交于点,则的度数为( ) A45B55C60D758如图所示,已知
2、点A(1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,A2021的位置,则A2021的坐标是()A(3038,1)B(3032,1)C(2021,0)D(2021,1)九、填空题9若,则的值为十、填空题10点关于轴的对称点的坐标是_.十一、填空题11如图,在中,的角平分线与的外角角平分线交于点E,则_度十二、填空题12如图,已知AB/EF,B=40,E=30,则C-D的度数为_十三、填空题13如图,四边形ABCD中,点M、N分别在AB、BC上,将BMN沿MN翻折,得FMN,若MFAD,FNDC,则D的度数为 _十四、填空题14x)表示小于x的最大整数,
3、如2.3)=2,4)=5,则下列判断:)=;x)x有最大值是0;x)x有最小值是1;xx)x,其中正确的是_ (填编号)十五、填空题15在平面直角坐标系中,有点A(a2,a),过点A作ABx轴,交x轴于点B,且AB2,则点A的坐标是_十六、填空题16如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,依此规律跳动下去,点的第2020次跳动至点的坐标是_十七、解答题17(1)计算:; (2)解方程组:十八、解答题18求下列各式中的 (1) (2)十九、解答题19完成下面推理过程,并在括号中填写推理依据:如
4、图,ADBC于点D,EGBC于点G,E3,试说明:AD平分BAC证明:ADBC,EGBCADC 90(垂直定义) EG(同位角相等,两直线平行)1 ( )23( )又3E(已知) 2 AD平分BAC 二十、解答题20如图,在平面直角坐标系中,的顶点都在格点上,点(1)写出点,的坐标;(2)求的面积二十一、解答题21若的整数部分为a,小数部分为b(1)求a,b的值(2)求的值二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果
5、把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由二十四、解答题24如图1,E点在上,(1)求证:(2)如图2,平分,与的平分线交于H点,若比大,求的度数(3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是
6、否改变?若不变,请直接写出答案;若改变,请说明理由二十五、解答题25在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由【参考答案】一、选择题1D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角【详解】A. 1和2是邻补角,不符合题意;B. 3和4是
7、同旁内角,不符合题意;C. 2和4没有关系,不符合题意;D. 1和4是同位角,符合题意;故选D【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键2D【分析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得
8、到,符合题意故选:D【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键3D【分析】根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限【详解】在轴上,在第四象限,故选D【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命题;两点确定一条直
9、线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5D【分析】由题意根据平行线的判定定理对四个选项进行逐一分析即可【详解】解:A. ,能证ADBC,故此选项错误;B. ,不能证明,故此选项错误;C. ,不能证明,故此选项错误;D. ,能证明,故此选项正确.故选:D.【点睛】本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角6B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得【详解】A、的平方根是,此项说法正确;B、的值是4,此项说法错误;C、的立
10、方根是,此项说法正确;D、的值是,此项说法正确;故选:B【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键7C【分析】利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小【详解】解:,故选:【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想8B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B
11、【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,20214=505.1, A2021的纵坐标与A1相同, 横坐标=5056+2=3032, A2021(3032,1), 故选B【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究
12、规律的方法九、填空题9【解析】解:有题意得,则解析:【解析】解:有题意得,则十、填空题10【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答【详解】点关于轴的对称点的坐标是,故答案为:【点睛】本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不解析:【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答【详解】点关于轴的对称点的坐标是,故答案为:【点睛】本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不变,纵坐标互为相反数十一、填空题1135【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示
13、出ECD,然后整理即可得到A与E的关系,进而可求出E【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示出ECD,然后整理即可得到A与E的关系,进而可求出E【详解】解:BE和CE分别是ABC和ACD的角平分线,EBC=ABC,ECD=ACD,又ACD是ABC的一外角,ACD=A+ABC,ECD=(A+ABC)=A+ECD,ECD是BEC的一外角,ECD=EBC+E,E=ECD-EBC=A+EBC-EBC=A=70=35,故答案为:35【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与
14、它不相邻的两个内角的和是解题的关键十二、填空题1210【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,ABCGDHEF,B=40,E=30,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本
15、题主要考查了平行线的性质,准确作出辅助线是解题的关键十三、填空题1395【分析】首先利用平行线的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数解析:95【分析】首先利用平行线的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数【详解】解:MFAD,FNDC,A100,C70,BMF100,FNB70,将BMN沿MN翻折,得FMN,FMNBMN50,FNMMNB35,FB180503595,D360100709595故答案为:95【点睛】此题
16、主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出FMNBMN,FNMMNB是解题关键十四、填空题14,【分析】x) 示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义解析:,【分析】x) 示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义知x)xx)+1,由xx)+1变形的x-1x),又x)x联立即可判断【详解】由定义知x)xx)+1,)=-9不正确,x)表示小于x的最大整数,x)x,x) -x0没有最
17、大值,不正确xx)+1,x)-x-1,x)x有最小值是1,正确,由定义知x)xx)+1,由xx)+1变形的x-1x),x)x,xx)x,正确故答案为:【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质x)xx)+1,利用性质解决问题是关键十五、填空题15(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),A解析:(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得
18、出答案【详解】解:点A(a2,a),ABx轴,AB2,|a|2,a2,当a2时,a20;当a2时,a24点A的坐标是(0,2)、(4,2)故答案为:(0,2)、(4,2)【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键十六、填空题16【分析】根据点的坐标、坐标的平移寻找规律即可求解【详解】解:因为P1(1,1),P2(-2,1), P3(2,2),P4(-3,2), P5(3,3),P6(-4,3), P7(4,解析:【分析】根据点的坐标、坐标的平移寻找规律即可求解【详解】解:因为P1(1,1),P2(-2,1), P3(2,2),P4(-3
19、,2), P5(3,3),P6(-4,3), P7(4,4),P8(-5,4), P2n-1(n,n),P2n(-n-1,n)(n为正整数), 所以2n=2020, n=1010, 所以P 2020(-1011,1010), 故答案为(-1011,1010)【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律十七、解答题17(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1);(2).【解析】【分析】(1)原式利用绝对值的代数意
20、义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=;(2)原方程组可化为: ,(1)2(2)得:7y7,解得:y1;把y1代入(1)得:x312,解得:x1,故方程组的解为: ;【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键十八、解答题18(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),解析:(1)或;
21、(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键十九、解答题19;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件解析:;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已
22、知条件3E,等量代换即可的,即可证明AD平分BAC【详解】证明:ADBC,EGBCADC90(垂直定义)EG(同位角相等,两直线平行)1(两直线平等行,同位角相等)23(两直线平行,内错角相等)又3E(已知)2(等量代换)AD平分BAC(角平分线的定义)故答案是:EGC;AD;E;两直线平等行,同位角相等;两直线平行,内错角相等;1;等量代换;角平分线定义【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键二十、解答题20(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于
23、一个长方形的面积减去三个直角三角形的面积【详解】解:(解析:(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(1), (2) 【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分解析:(1),;(2).【分析】(1)利用无理数的估值
24、方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分与小数部分问题,掌握无理数的估值方法是关键.二十二、解答题22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形
25、周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角
26、平分线的定义,即可得到ECG=G解析:(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,
27、QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,C
28、PQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等二十四、解答题24(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再解析:(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数;(3)如图3,过点作,设直线和直线相交于点,根据平
29、行线的性质和角平分线定义可求的度数【详解】解:(1)证明:如图1,延长交于点,;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质二十五、解答题25(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与
30、B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识