资源描述
人教小学五年级下册数学期末解答综合复习题含答案图文
1.修路队计划第一季度要完成一条道路的修理任务。一月份修了这条路的,二月份修了这条路的。要完成修路计划,三月份应当修这条路的几分之几?
2.乐乐用一根1m长的铁丝围成一个三角形,量得三角形的一边是,另一边是,第三条边长多少米?它是一个什么三角形?
3.某工程队修一条路,第一周修了全长的,第二周修了全长的,第三周比前两周修的总和少,少的部分占全长的,第三周修了全长的几分之几?
4.从学校步行到图书馆,小明用了小时,小红比小明少用小时,小林比小红多用了小时。小林用了多少小时到达图书馆?
5.师傅每小时加工的零件个数是徒弟的1.25倍。两人合作加工360个零件,同时开工,同时结束,4小时就完成了任务。徒弟每小时加工多少个零件?
6.甲、乙、丙三人分113个苹果,如果把甲分得的个数减去5,乙分得的个数减去24,丙把分得的个数送给别人一半后,三人的苹果个数就相同。三人原来各分得苹果多少个?
7.高英小学五年级比六年级少45人,六年级人数是五年级的1.2倍,两个年级各有多少人?
8.妈妈买的一件上衣比一条裤子贵75元。一件上衣的价钱是一条裤子的2.5倍,一件上衣、一条裤子各多少元钱?(列方程)
9.如图,一条圆形跑道,AB是直径。甲乙两人分别从A、B两点出发,按箭头方向前进,他们在离A点75米的C点相遇,接着又在离B点25米的D点相遇。圆形跑道的长是多少米?
10.有一批砖,每块砖长45厘米,宽30厘米。至少用多少块这样的砖才能铺成一个正方形?
11.王萌家新房的厨房地面是一个长400厘米、宽300厘米的长方形。如果给厨房地面铺上地砖,选择下面哪种规格的正方形地砖能正好铺满?(先在□里画“√”,再写出理由)
12.箭牌陶瓷专卖店有以下三种规格的正方形地砖可供笑笑家选择。笑笑家客厅的地面是长为40分米,宽为32分米的长方形,笑笑家选择哪种地砖铺客厅地面既整齐又不会有余料?(写出过程)
13.列方程解答下面各题,并完成表格。
阳光小学五年级常用的家校联系途径及人数统计表
联系途径
微信
钉钉
QQ
人数
72
36
(1)微信联系中,一般采用文字沟通或语音通话,文字沟通人数是语音通话人数的2倍,微信联系中采用文字沟通、语音通话的各有多少人?
(2)采用QQ联系的人数比采用钉钉联系的2倍多4人,采用钉钉联系的有多少人?
14.已知一个长方形的周长是3m,长是宽的1.5倍。这个长方形的面积是多少?(用方程解决问题)
15.校园里的杨树和松树一共有60棵,杨树的棵数是松树的1.5倍。杨树和松树各有多少棵?(列方程解答)
16.四年级植树360棵,比三年级的2倍还多30棵,三年级植树多少棵?(列方程解答)
17.客车和货车同时从相距350千米的甲乙两地相对开去,经过3.5小时两车相遇,已知货车每小时行40千米,客车每小时行多少千米?
18.甲、乙两车从相距486km的两地同时出发,相向而行,3.6小时后两车相遇。已知甲车每小时行65km,则乙车每小时行多少千米?(列方程解答)
19.A地到B地相距1320千米,甲、乙两车同时从两地相对开出,甲车每小时行驶120千米,乙车每小时比甲车慢20千米,甲、乙两车经过几小时相遇?
20.甲、乙两辆汽车同时从同一个地点,向背而行,2.5小时后相距360千米。甲车的速度74千米/时,乙车的速度是多少千米/时?
21.有一个周长是94.2米的圆形草坪,准备给它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种喷灌装置。你认为应选哪种比较合适?安装在什么地方?装好后最多可喷灌多大面积的草坪?
22.桥边公园里准备修一个圆形花坛,周长50.24米,花坛周围有一个2米宽的环形草地。草地的面积多少平方米?
23.普通120型光盘是一个圆环,其标准尺寸为:外径12cm、内径1.5cm。光盘的面积是多少?
24.小明:阿姨,我买一个12寸的披萨。
阿姨:12寸的卖完了,给你换成两个6寸的披萨,可以吗?
如果你是小明,你同意这种换法吗?为什么?(可以画一画、算一算,说明理由)
25.下表是某公司2020年1—12月的收入、支出统计表。
月份
1
2
3
4
5
6
7
8
9
10
11
12
收入/万元
40
60
30
30
50
60
80
70
70
80
90
80
支出/万元
20
30
10
20
20
30
20
30
40
50
40
50
(1)请根据上表绘制一幅复式折线统计图。
(2)请根据统计图回答下列问题。
①( )月份收入和支出相差最大。
②6月份收入和支出相差( )万元。
③第四季度实际收入( )万元。
④平均每月支出( )万元。
26.下面是宏达有限公司2020年四个季度的收入与支出情况统计图。
(1)不计算,从图上可直接看出第( )季度节余(收入减去支出)最多,节余( )万元。
(2)求出2020年宏达有限公司的总节余。
27.小冬和小楠每天进行30次的投篮练习,下图是他们一周投球命中的成绩统计。
(1)根据“第七天,小冬比小楠多命中5次”的信息,补充完成上面的统计图。
(2)小楠第( )天命中20次。
(3)同一天中,两人命中次数相差最多( )次。
(4)这一周,小冬平均每天命中( )次。
(5)从统计的情况看,这一周投球练习效果比较好的是( )。(填名字)
28.下面是崆峒区县某便利店去年两种品牌牛奶1~6月销售情况统计表。
月份
1
2
3
4
5
6
甲/箱
20
25
35
40
50
55
乙/箱
15
18
20
16
12
10
(1)根据上表绘制折线统计图。
(2)( )月两种品牌牛奶的销量差距最大。
(3)根据折线统计图,写出乙品牌去年1~6月销量变化的趋势。
1.【分析】
把这条路看作单位“1”,1-一月份修了这条路的分率-二月份修了这条路的分率即为三月份应当修这条路的分率。
【详解】
1--
=-
=
答:三月份应当修这条路的。
【点睛】
同分母的分数相
解析:
【分析】
把这条路看作单位“1”,1-一月份修了这条路的分率-二月份修了这条路的分率即为三月份应当修这条路的分率。
【详解】
1--
=-
=
答:三月份应当修这条路的。
【点睛】
同分母的分数相加减,只把分子相加减,分母不变;异分母的分数相加减,先通分,然后再加减。
2.;等腰三角形
【分析】
用铁丝长度减去已知的两条边的长度,就是第三条边的长度,根据三条边的长度确定三角形类型。
【详解】
=
答:第三条边长,它是一个等腰三角形。
【点睛】
封闭图形一周的长度
解析:;等腰三角形
【分析】
用铁丝长度减去已知的两条边的长度,就是第三条边的长度,根据三条边的长度确定三角形类型。
【详解】
=
答:第三条边长,它是一个等腰三角形。
【点睛】
封闭图形一周的长度叫周长,两条边相等的三角形叫等腰三角形。
3.【分析】
根据条件,第三周比前两周修的总和少,少的部分占全长的,即第一周修的长度+第二周修的长度-=第三周修的长度,把数代入即可求解。
【详解】
+-
=-
=
答:第三周修了全长的。
【点睛】
解析:
【分析】
根据条件,第三周比前两周修的总和少,少的部分占全长的,即第一周修的长度+第二周修的长度-=第三周修的长度,把数代入即可求解。
【详解】
+-
=-
=
答:第三周修了全长的。
【点睛】
此题主要考查分数加减混合运算及应用,熟练掌握分数加减法的计算方法并灵活运用。
4.小时
【分析】
用小明用时-小红比小明少用的时间,求出小红用时,小红用时+小林比小红多用的时间=小林用时,据此列式解答。
【详解】
-+
=-+
=(小时)
答:小林用了小时到达图书馆。
【点睛】
解析:小时
【分析】
用小明用时-小红比小明少用的时间,求出小红用时,小红用时+小林比小红多用的时间=小林用时,据此列式解答。
【详解】
-+
=-+
=(小时)
答:小林用了小时到达图书馆。
【点睛】
异分母分数相加减,先通分再计算。
5.40个
【分析】
等量关系式:(师傅的工作效率+徒弟的工作效率)×工作时间=工作总量,据此解答。
【详解】
解:设徒弟每小时加工x个零件,则师傅每小时加工1.25x个零件。
(1.25x+x)×4=
解析:40个
【分析】
等量关系式:(师傅的工作效率+徒弟的工作效率)×工作时间=工作总量,据此解答。
【详解】
解:设徒弟每小时加工x个零件,则师傅每小时加工1.25x个零件。
(1.25x+x)×4=360
2.25x×4=360
9x=360
x=360÷9
x=40
答:徒弟每小时加工40个零件。
【点睛】
掌握工作总量、工作效率、工作时间之间的数量关系是解答题目的关键。
6.甲:26个;乙45个;丙42个
【分析】
设三人的苹果个数相同时的个数是x个,则原来甲分得x+5个苹果,乙分得x+24个苹果;丙分得2x个苹果;根据甲、乙、丙三人分的苹果总是是113个列出方程求出相
解析:甲:26个;乙45个;丙42个
【分析】
设三人的苹果个数相同时的个数是x个,则原来甲分得x+5个苹果,乙分得x+24个苹果;丙分得2x个苹果;根据甲、乙、丙三人分的苹果总是是113个列出方程求出相等时的个数,再分别求出x+5、x+24、2x的值即可。
【详解】
解:设三人的苹果个数相同时的个数是x个,根据题意得:
x+5+x+24+2x=113
4x+29=113
4x=113-29
x=84÷4
x=21
甲:21+5=26(个)
乙:21+24=45(个)
丙:21×2=42(个)
答:原来甲分得26个,乙分得45个,丙分得42个。
【点睛】
本题主要考查列方程解含有两个未知数的问题,正确设出未知数是解题的关键。
7.五年级:225人;六年级:270人
【分析】
由题意可知:设五年级的有x人,则六年级有1.2x人,根据六年级人数-五年级人数=45,据此列方程,解方程即可。
【详解】
解:设五年级的有x人,则六年级
解析:五年级:225人;六年级:270人
【分析】
由题意可知:设五年级的有x人,则六年级有1.2x人,根据六年级人数-五年级人数=45,据此列方程,解方程即可。
【详解】
解:设五年级的有x人,则六年级有1.2x人。
1.2x-x=45
0.2x=45
x=225
225×1.2=270(人)
答:五年级有225人,六年级有270人。
【点睛】
本题考查用方程解决实际问题,明确数量关系是解题的关键。
8.一件上衣150元,一条裤子50元
【分析】
根据题意可知,“一条裤子的价钱×2.5=一件上衣的价钱”,“一件上衣的价钱-一条裤子的价钱=75”,据此列方程解答即可。
【详解】
解:设一条裤子x元,则
解析:一件上衣150元,一条裤子50元
【分析】
根据题意可知,“一条裤子的价钱×2.5=一件上衣的价钱”,“一件上衣的价钱-一条裤子的价钱=75”,据此列方程解答即可。
【详解】
解:设一条裤子x元,则一件上衣2.5x元;
2.5x-x=75
1.5x=75
x=50;
50×2.5=125(元);
答:一件上衣150元,一条裤子50元。
【点睛】
解答本题时,根据一条裤子与一件上衣价钱的倍数关系设出未知量,根据价钱差列方程解答。
9.400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,
解析:400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,则甲应该行:75×3=225米,即:AD=225米,又:BD=25米,所以所以半个圆周:AB=AD-BD=225-25=200(米),由此即能求出圆的周长。
【详解】
(75×3-25)×2
=(225-25)×2
=200×2
=400(米)
答:圆形跑道的长是400米。
【点睛】
明确所给条件求出圆的周长是完成本题的关键.本题通过画图分析更直观一些。
10.6块
【详解】
45和30的最小公倍数是90。
(90÷45)×(90÷30)=6(块)
答:至少要用6块这样的地砖才能铺成一个正方形。
解析:6块
【详解】
45和30的最小公倍数是90。
(90÷45)×(90÷30)=6(块)
答:至少要用6块这样的地砖才能铺成一个正方形。
11.;理由见解析。
【分析】
要把长400厘米、宽300厘米的长方形铺满,所需要的正方形的边长必须是400和300的公因数,据此得解。
【详解】
400=2×2×2×2×5×5
300=2×2×3×5×
解析:;理由见解析。
【分析】
要把长400厘米、宽300厘米的长方形铺满,所需要的正方形的边长必须是400和300的公因数,据此得解。
【详解】
400=2×2×2×2×5×5
300=2×2×3×5×5
由此可判断,50是这两个数的公因数,80和60不是。
所以选择边长是50厘米的正方形地砖能正好铺满。
【点睛】
明白利用公因数的求解方法来解决问题是解答此题的关键。
12.8分米
【分析】
分别对48、32分解质因数,便可得到这两个数所有的公因数;接下来根据三种规格的正方形地砖的边长,找出边长符合这两个数的公因数的地砖即可。
【详解】
48=2×2×2×2×3
32=
解析:8分米
【分析】
分别对48、32分解质因数,便可得到这两个数所有的公因数;接下来根据三种规格的正方形地砖的边长,找出边长符合这两个数的公因数的地砖即可。
【详解】
48=2×2×2×2×3
32=2×2×2×2×2
所以这两个数的公因数有:1、2、4、8、16;结合地砖的边长可知需选择8分米的地砖。
答:笑笑家选择8分米的地砖铺地面既整齐又不有余料。
【点睛】
本题是求两个数的公因数在实际中的应用题目,熟练掌握求两个数的公因数的方法是解题的关键。
13.(1)48人;24人
(2)16人
表格见详解
【分析】
(1)根据文字沟通人数是语音通话人数的2倍,把语音通话人数设为x人,那么文字沟通人数为2x人,用“文字沟通人数+语音通话人数=72”列方程;
解析:(1)48人;24人
(2)16人
表格见详解
【分析】
(1)根据文字沟通人数是语音通话人数的2倍,把语音通话人数设为x人,那么文字沟通人数为2x人,用“文字沟通人数+语音通话人数=72”列方程;
(2)根据采用QQ联系的人数比采用钉钉联系的2倍多4人,数量关系为:QQ联系的人数=采用钉钉联系的2倍+4,列方程。
【详解】
(1)解:设语音沟通的有x人。
2x+x=72
x=24
文字沟通人数:24×2=48(人)
答:微信联系中采用文字沟通48人,语音通话的有24人。
(2)解:设采用钉钉联系的有x人。
2x+4=36
x=16
答:采用钉钉联系的有16人。
联系途径
微信
钉钉
QQ
人数
72
16
36
【点睛】
14.54平方米
【分析】
设长方形的宽为x米,则长是1.5x米。(长+宽)×2=长方形的周长,据此列方程解答求出长方形的长和宽,再根据“长方形的面积=长×宽”求出面积。
【详解】
解:设长方形的宽为x米
解析:54平方米
【分析】
设长方形的宽为x米,则长是1.5x米。(长+宽)×2=长方形的周长,据此列方程解答求出长方形的长和宽,再根据“长方形的面积=长×宽”求出面积。
【详解】
解:设长方形的宽为x米,那么长为1.5x米。
2(x+1.5x)=3
2×2.5x=3
5x=3
x=0.6
长:0.6×1.5=0.9(米)
面积:0.6×0.9=0.54(平方米)
答:这个长方形的面积是0.54平方米。
【点睛】
本题含有两个未知数,设长方形的宽是x米,用含有x的式子表示长方形的长,再根据长方形的周长公式即可列出方程。
15.杨树有36棵;松树有24棵
【分析】
根据题意,设松树有x棵,则杨树有1.5x棵,杨树与松树一共有60棵,列方程:x+1.5x=60,解方程,即可解答。
【详解】
解:设松树有x棵,则杨树有1.5x
解析:杨树有36棵;松树有24棵
【分析】
根据题意,设松树有x棵,则杨树有1.5x棵,杨树与松树一共有60棵,列方程:x+1.5x=60,解方程,即可解答。
【详解】
解:设松树有x棵,则杨树有1.5x棵
x+1.5x=60
2.5x=60
x=60÷2.5
x=24
杨树有:2.4×15=36(棵)
答:杨树有36棵,松树有24棵。
【点睛】
本题考查方程的实际应用,根据题意,找出相关的量,列方程,解方程。
16.165棵
【分析】
设三年级植树x棵,根据等量关系“三年级植树棵数×2+30=360”列方程解答即可。
【详解】
解:设三年级植树x棵,
2x+30=360
2x=330
x=165
答:三年级植树
解析:165棵
【分析】
设三年级植树x棵,根据等量关系“三年级植树棵数×2+30=360”列方程解答即可。
【详解】
解:设三年级植树x棵,
2x+30=360
2x=330
x=165
答:三年级植树165棵。
【点睛】
本题考查了列方程解应用题,关键是根据等量关系“三年级植树棵数×2+30=360”列方程。
17.60千米
【分析】
用总路程÷相遇时间,求出两车速度和,速度和-货车速度=客车速度,据此列式解答。
【详解】
350÷3.5-40
=100-40
=60(千米)
答:客车每小时行60千米。
【点睛
解析:60千米
【分析】
用总路程÷相遇时间,求出两车速度和,速度和-货车速度=客车速度,据此列式解答。
【详解】
350÷3.5-40
=100-40
=60(千米)
答:客车每小时行60千米。
【点睛】
关键是理解速度、时间、路程之间的关系。
18.70千米
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列方程计算。
【详解】
解:设乙车每小时行多少千米。
(65+)×3.6=486
65+=486÷3.6
65+=135
解析:70千米
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列方程计算。
【详解】
解:设乙车每小时行多少千米。
(65+)×3.6=486
65+=486÷3.6
65+=135
=135-65
=70
答:乙车每小时行70千米。
【点睛】
根据相遇问题公式找出等量关系式是解答题目的关键。
19.6小时
【分析】
根据题意,甲车每小时行驶120千米,乙车比甲车每小时慢20千米,乙车的速度是(120-20)千米,设甲、乙两车经过x小时相遇,甲车x小时行驶120x千米,乙车x小时行驶(120-2
解析:6小时
【分析】
根据题意,甲车每小时行驶120千米,乙车比甲车每小时慢20千米,乙车的速度是(120-20)千米,设甲、乙两车经过x小时相遇,甲车x小时行驶120x千米,乙车x小时行驶(120-20)x千米,两车相遇是A地到B地距离,列方程:120x+(120-20)x=1320,解方程,即可解答。
【详解】
解:设甲、乙两车经过x小时相遇
120x+(120-20)x=1320
120x+100x=1320
220x=1320
x=1320÷220
x=6
答:甲、乙两车经过6小时相遇。
【点睛】
本题考查方程的实际应用,根据题意,找出相关的量,列方程,解方程。
20.70千米/时
【分析】2.5小时可以看作是两车的相遇时间。速度和=总路程÷相遇时间,据此用360除以2.5求出两车的速度和,再减去甲车的速度即可求出乙车的速度。
【详解】
360÷2.5-74
=1
解析:70千米/时
【分析】2.5小时可以看作是两车的相遇时间。速度和=总路程÷相遇时间,据此用360除以2.5求出两车的速度和,再减去甲车的速度即可求出乙车的速度。
【详解】
360÷2.5-74
=144-74
=70(千米/时)
答:乙车的速度是70千米/时。
【点睛】
本题属于相遇问题。熟练掌握速度和与总路程、相遇时间的关系是解决相遇问题的关键。
21.2÷3.14÷2=15(米)
15×15×3.14=706.5(平方米)
答:应选射程为15米的喷灌装置,安装在草坪的中心。装好后最多可喷灌706.5平方米的草坪。
【解析】自动旋转喷灌装置旋转一
解析:2÷3.14÷2=15(米)
15×15×3.14=706.5(平方米)
答:应选射程为15米的喷灌装置,安装在草坪的中心。装好后最多可喷灌706.5平方米的草坪。
【解析】自动旋转喷灌装置旋转一周,喷灌的面积就是圆的面积,射程是圆的半径。
22.04平方米
【分析】
圆环的面积S=π(R2-r2),其中r=C÷π÷2,R=r+2,据此代入数据计算即可。
【详解】
50.24÷3.14÷2
=16÷2
=8(米)
8+2=10(米)
3.14
解析:04平方米
【分析】
圆环的面积S=π(R2-r2),其中r=C÷π÷2,R=r+2,据此代入数据计算即可。
【详解】
50.24÷3.14÷2
=16÷2
=8(米)
8+2=10(米)
3.14×(102-82)
=3.14×36
=113.04(平方米)
答:草地的面积是113.04平方米。
【点睛】
此题考查了圆环的面积计算,牢记公式,找出内圆和外圆的半径是解题关键。
23.095平方厘米
【分析】
根据圆环的面积S=π(R2-r2),代入数据计算即可。
【详解】
3.14×(122-1.52)
=3.14×(144-2.25)
=3.14×141.75
=445.09
解析:095平方厘米
【分析】
根据圆环的面积S=π(R2-r2),代入数据计算即可。
【详解】
3.14×(122-1.52)
=3.14×(144-2.25)
=3.14×141.75
=445.095(cm2)
答:光盘的面积是445.095平方厘米。
【点睛】
此题考查了圆环面积的计算,牢记公式认真计算即可。
24.如果我是小明,我不同意这种换法。因为一个12寸的披萨大于两个6寸的披萨,换2个6寸的披萨不合算。
【分析】
可以通过画一画的方法,在一个直径为12寸的圆形披萨上可以画出2个6寸的披萨,从而知道一个1
解析:如果我是小明,我不同意这种换法。因为一个12寸的披萨大于两个6寸的披萨,换2个6寸的披萨不合算。
【分析】
可以通过画一画的方法,在一个直径为12寸的圆形披萨上可以画出2个6寸的披萨,从而知道一个12寸的披萨大于两个6寸的披萨;还可以通过计算,根据圆的面积公式:S=πr2,先算出一个12寸的披萨的面积,再算出2个6寸的披萨的面积,然后比较大小即可。
【详解】
(1)如下图:
由图意可以看出,一个12寸的披萨大于两个6寸的披萨;
(2)3.14×(12÷2)2
=3.14×36
=113.04(平方寸)
3.14×(6÷2)2×2
=3.14×9×2
=56.52(平方寸)
由此可知一个12寸的披萨大于两个6寸的披萨;
如果我是小明,我不同意这种换法。
【点睛】
此题考查的是圆的面积的计算,掌握公式是关键。
25.(1)图见详解;(2)①7;②30;③110;④30
【分析】
(1)根据表格中的数据,描点连线即可;
(2)①观察统计图,找出纵坐标距离相差最大的两点对应的月份即可;
②6月份收入-6月份支出即可
解析:(1)图见详解;(2)①7;②30;③110;④30
【分析】
(1)根据表格中的数据,描点连线即可;
(2)①观察统计图,找出纵坐标距离相差最大的两点对应的月份即可;
②6月份收入-6月份支出即可。
③第四季度的收入总和-第四季度的支出总和即可;
④全年的支出总和÷12即可。
【详解】
(1)作图如下:
(2)①7月份收入和支出相差最大。
②60-30=30(万元)
6月份收入和支出相差30万元。
③(80+90+80)-(50+40+50)
=250-140
=110(万元)
第四季度实际收入110万元。
④(20+30+10+20+20+30+20+30+40+50+40+50)÷12
=360÷12
=30(万元)
平均每月支出30万元。
【点睛】
此题考查了折线统计图的绘制以及相关应用,能够根据问题从统计图中提取有效数学信息是解题关键。
26.(1)四;400
(2)900万元
【分析】
(1)根据统计图可知,第四季度时,表示收入和支出的两点相距的最远,说明节余最多,用第四季度的收入减去支出即可求出节余;
(3)用总收入减去总支出即可。
解析:(1)四;400
(2)900万元
【分析】
(1)根据统计图可知,第四季度时,表示收入和支出的两点相距的最远,说明节余最多,用第四季度的收入减去支出即可求出节余;
(3)用总收入减去总支出即可。
【详解】
(1)900-500=400(万元);
从图上可直接看出第四季度节余最多,节余400万元;
(2)(800+400+500+900)-(600+300+300+500)
=2600-1700
=900(万元);
答:2020年宏达有限公司的总节余为900万元。
【点睛】
理解统计图中的数学信息是解答本题的关键,明确点和线段表示的意义。
27.(1)见详解
(2)二;
(3)7;
(4)19;
(5)小冬
【分析】
(1)用小楠命中次数+5,求出小东命中次数,在统计图上描点、连线、标数据即可。
(2)虚线表示小楠命中次数,找到20次,再看
解析:(1)见详解
(2)二;
(3)7;
(4)19;
(5)小冬
【分析】
(1)用小楠命中次数+5,求出小东命中次数,在统计图上描点、连线、标数据即可。
(2)虚线表示小楠命中次数,找到20次,再看横轴对应时间即可;
(3)同一天中,两个数据离着越远表示相差最多,求差即可;
(4)根据平均数=总数÷份数,计算即可;
(5)观察统计图,折线整体往上,数据点位置整体靠上的联系效果较好。
【详解】
(1)
(2)小楠第二天命中20次。
(3)20-13=7(次)
(4)(16+17+18+19+20+21+22)÷7
=133÷7
=19(次)
(5)从统计的情况看,这一周投球练习效果比较好的是小冬。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
28.(1)见详解
(2)6
(3)1月到3月乙品牌销量逐渐增长,3月到6月乙品牌销量逐渐降低。
【分析】
(1)根据统计表绘制出复式折线统计图即可;
(2)根据统计图可知,6月份表示两种品牌牛奶销量的点
解析:(1)见详解
(2)6
(3)1月到3月乙品牌销量逐渐增长,3月到6月乙品牌销量逐渐降低。
【分析】
(1)根据统计表绘制出复式折线统计图即可;
(2)根据统计图可知,6月份表示两种品牌牛奶销量的点距离最大,说明销量差距最大;
(3)根据统计图可知,1月到3月乙品牌销量逐渐增长,3月到6月乙品牌销量逐渐降低。
【详解】
(1)如图:
(2)6月两种品牌牛奶的销量差距最大;
(3)1月到3月乙品牌销量逐渐增长,3月到6月乙品牌销量逐渐降低。
【点睛】
解答本题的关键是读懂复式折线统计图中的数学信息,再根据这些数学信息解答问题。
展开阅读全文