资源描述
2023年人教版七7年级下册数学期末质量检测试卷及答案
一、选择题
1.如图,下面结论正确的是( )
A.和是同位角 B.和是内错角
C.和是同旁内角 D.和是内错角
2.下列图案可以由部分图案平移得到的是( )
A. B. C. D.
3.已知点P的坐标为,则点P在第( )象限.
A.一 B.二 C.三 D.四
4.下列命题是假命题的是( )
A.对顶角相等
B.两条直线被第三条直线所截,同位角相等
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行
5.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b中的直线b上,已知,则的度数为
A. B. C. D.
6.下列说法正确的是( )
A.64的平方根是8 B.-16的立方根是-4
C.只有非负数才有立方根 D.-3的立方根是
7.如图,AB//CD,AD⊥AC,∠ACD=53°,则∠BAD的度数为( )
A.53° B.47° C.43° D.37°
8.如图,在平面直角坐标系中,将边长为3,4,5的沿轴向右滚动到的位置,再到的位置…依次进行下去,发现,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.已知实数x,y满足+(y+1)2=0,则x-y的立方根是_____.
十、填空题
10.在平面直角坐标系中,点与点关于轴对称,则的值是_____.
十一、填空题
11.如图,已知△ABC是锐角三角形,BE、CF分别为∠ABC与∠ACB的角平分线,BE、CF相交于点O,若∠A=50°,则∠BOC=_______.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.如图,在四边形ABCD纸片中,AD∥BC,AB∥CD.将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K.若∠CKF=35°,则∠A+∠GED=______°.
十四、填空题
14.如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是__________.
十五、填空题
15.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.
十六、填空题
16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是______.
十七、解答题
17.计算:(1);(2)
十八、解答题
18.求下列各式中实数的x值.
(1)25x2﹣36=0
(2)|x+2|=π
十九、解答题
19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.
(1)如图1,已知与中,,,与相交于点.问:与有何关系?
①请完成下面的推理过程.
理由:,
.
,
.
.
②结论:与关系是 .
(2)如图2,已知,,则与有何关系?请直接写出你的结论.
(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .
二十、解答题
20.如图,在平面直角坐标系中,的顶点都在格点上,点.
(1)写出点,的坐标;
(2)求的面积.
二十一、解答题
21.已知某正数的两个不同的平方根是和;的立方根为;是的整数部分.
求的平方根.
二十二、解答题
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
二十四、解答题
24.已知:如图1,,点,分别为,上一点.
(1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.
(2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明).
二十五、解答题
25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.
(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;
(2)关于“准互余三角形”,有下列说法:
①在中,若,,,则是“准互余三角形”;
②若是“准互余三角形”,,,则;
③“准互余三角形”一定是钝角三角形.
其中正确的结论是___________(填写所有正确说法的序号);
(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答
【详解】
解:A、由同位角的概念可知,∠1与∠2不是同位角,故A选项错误;
B、由内错角的概念可知,∠2与∠3不是内错角,故B选项错误;
C、 和 是对顶角,故C错误;
D、由内错角的概念可知,∠1与∠4是内错角,故D选项正确.
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
2.C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:、是旋转变换,不是平移,选项错误,不符合题意;
、轴对称变换,不是平移,选项错误,不符合题意;
、是平移,选项正确,符合题意;
、图形的大
解析:C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:、是旋转变换,不是平移,选项错误,不符合题意;
、轴对称变换,不是平移,选项错误,不符合题意;
、是平移,选项正确,符合题意;
、图形的大小发生了变化,不是平移,选项错误,不符合题意.
故选:C.
【点睛】
本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.
3.B
【分析】
直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案.
【详解】
解:∵点P的坐标为P(-2,4),
∴点P在第二象限.
故选:B.
【点睛】
此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.
4.B
【分析】
根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.
【详解】
A、对顶角相等;真命题;
B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;
C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;
D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;
故选:B.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.
5.B
【分析】
先根据平行线的性质求出∠1的同位角,再由两角互余的性质求出∠2的度数即可;
【详解】
∵直线a∥b,∠1=55°,
∴∠1=∠3=55°,
∵三角板的直角顶点放在b上,
∴∠3+∠2=90°,
∴∠2=90°-55°=35°,
故选:B.
【点睛】
本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键;
6.D
【分析】
根据平方根和立方根的定义逐项判断即可得.
【详解】
A、64的平方根是,则此项说法错误,不符题意;
B、因为 ,所以的立方根不是,此项说法错误,不符题意;
C、任何实数都有立方根,则此项说法错误,不符题意;
D、因为,所以的立方根是,此项说法正确,符合题意;
故选:D.
【点睛】
本题考查了平方根和立方根,熟练掌握定义是解题关键.
7.D
【分析】
因为AD⊥AC,所以∠CAD=90°.由AB//CD,得∠BAC=180°﹣∠ACD,进而求得∠BAD的度数.
【详解】
解:∵AB//CD,
∴∠ACD+∠BAC=180°.
∴∠CAB=180°﹣∠ACD=180°﹣53°=127°.
又∵AD⊥AC,
∴∠CAD=90°.
∴∠BAD=∠CAB﹣∠CAD=127°﹣90°=37°.
故选:D.
【点睛】
本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.
8.D
【分析】
根据旋转的过程寻找规律即可求解.
【详解】
解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,
所以点A1(12,3),A2(15,0);
继续旋转得A3(24,3),A4(
解析:D
【分析】
根据旋转的过程寻找规律即可求解.
【详解】
解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,
所以点A1(12,3),A2(15,0);
继续旋转得A3(24,3),A4(27,0);
…
发现规律:A9(5×12,3),
A10(5×12+3,0),
即(63,0).
故选:D.
【点睛】
本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.
九、填空题
9.【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是
解析:
【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
十、填空题
10.4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的
解析:4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.
十一、填空题
11.115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB
解析:115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)= ×130°=65°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.145
【分析】
首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.
【详解】
解:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行
解析:145
【分析】
首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.
【详解】
解:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠A=∠C,
根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK,
∵AD∥BC,
∴∠DEF=∠EFB,∠AEF=∠EFC,
∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK,
∴∠GEF﹣∠DEF=∠EFC﹣∠EFK,
∴∠GED=∠CFK,
∵∠C+∠CFK+∠CKF=180°,
∴∠C+∠CFK=145°,
∴∠A+∠GED=145°,
故答案为145.
【点睛】
本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键.
十四、填空题
14.、、、.
【详解】
解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;
如果两次才输出结果:则x=(53-2)÷3=17;
如果三次才输出结果:则x=(17-2)÷3=5;
解析:、、、.
【详解】
解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;
如果两次才输出结果:则x=(53-2)÷3=17;
如果三次才输出结果:则x=(17-2)÷3=5;
如果四次才输出结果:则x=(5-2)÷3=1;
则满足条件的整数值是:53、17、5、1.
故答案为53、17、5、1.
点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.
十五、填空题
15.-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标
解析:-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标和A点的纵坐标相同,都是4,
又∵A(-2,4),AB=5,
∴当B点在A点左侧的时候,B(-7,4),
此时B点的横纵坐标之和是-7+4=-3,
当B点在A点右侧的时候,B(3,4),
此时B点的横纵坐标之和是3+4=7;
故答案为:-3或7.
【点睛】
本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.
十六、填空题
16.【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为
解析:
【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为,
所以点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.
十七、解答题
17.(1)0 ;(2)2
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
解析:(1)0 ;(2)
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
②原式==
十八、解答题
18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=
解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=36,
x2=,
x=±;
(2)|x+2|=π,
x+2=±π,
x=﹣2﹣π或x=﹣2+π.
【点睛】
本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数.
十九、解答题
19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.
【分析】
(1)如图1,根据,,即可得与的关系;
(2)如图2,根据
解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.
【分析】
(1)如图1,根据,,即可得与的关系;
(2)如图2,根据,,即可得与的关系;
(3)由(1)(2)即可得出结论.
【详解】
解:(1)①理由:,
(两直线平行,同旁内角互补),
,
(两直线平行,同位角相等),
.
②结论:与关系是互补.
故答案为:①;两直线平行,同旁内角互补;两直线平行,同位角相等;;②相等.
(2),理由如下:
,
,
,
,
.
(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,
故答案为:这两个角互补或相等.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.
二十、解答题
20.(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(
解析:(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(1),
(2)
【点睛】
本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
二十一、解答题
21.【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
解析:
【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
,
的平方根是.
【点睛】
本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠
解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=∠BAP,∠DCK=∠DCP,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
二十四、解答题
24.(1)见解析;(2)见解析
【分析】
(1)过点M作MP∥AB.根据平行线的性质即可得到结论;
(2)根据平行线的性质即可得到结论.
【详解】
解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E
解析:(1)见解析;(2)见解析
【分析】
(1)过点M作MP∥AB.根据平行线的性质即可得到结论;
(2)根据平行线的性质即可得到结论.
【详解】
解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.
证明:过点M作MP∥AB.
∵AB∥CD,
∴MP∥CD.
∴∠4=∠3.
∵MP∥AB,
∴∠1=∠2.
∵∠EMF=∠2+∠3,
∴∠EMF=∠1+∠4.
∴∠EMF=∠AEM+∠MFC;
证明:过点M作MQ∥AB.
∵AB∥CD,
∴MQ∥CD.
∴∠CFM+∠1=180°;
∵MQ∥AB,
∴∠AEM+∠2=180°.
∴∠CFM+∠1+∠AEM+∠2=360°.
∵∠EMF=∠1+∠2,
∴∠AEM+∠EMF+∠MFC=360°;
(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;
过点M作MP∥AB,过点N作NQ∥AB,
∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,
∴∠2+∠3=180°,
∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,
∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,
∴∠EMN+∠MNF-∠AEM-∠NFC
=∠1+∠2+∠3+∠4-∠1-∠4
=∠2+∠3
=180°;
如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.
过点M作MP∥AB,过点N作NQ∥AB,
∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,
∴∠2=∠3,
∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,
∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,
∴∠EMN-∠MNF+∠AEM+∠NFC
=∠1+∠2-∠3-∠4+180°-∠1+∠4
=180°.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
二十五、解答题
25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角
解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.
【详解】
(1)证明:∵在中,,
∴,
∵BD是的角平分线,
∴,
∴,
∴是“准互余三角形”;
(2)①∵,
∴,
∴是“准互余三角形”,
故①正确;
②∵, ,
∴,
∴不是“准互余三角形”,
故②错误;
③设三角形的三个内角分别为,且,
∵三角形是“准互余三角形”,
∴或,
∴,
∴,
∴“准互余三角形”一定是钝角三角形,
故③正确;
综上所述,①③正确,
故答案为:①③;
(3)∠APB的度数是10°或20°或40°或110°;
如图①,
当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A=20°,
∴∠APB=110°;
如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
∴∠APB=40°;
如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠APB=20°;
如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
所以∠A=40°,
所以∠APB=10°;
综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.
【点睛】
本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.
展开阅读全文