资源描述
人教五年级下册数学期末解答测试试卷(含解析)
1.五(1)班有3个小组参加植树活动,第一组5人种6棵树。第二组8人种7棵。第三组9人种10棵。哪个组每人种树最多?
2.玉华商店购进一批糖果,卖出了30千克,卖出的部分比剩下的多5千克。卖出的是剩下的几分之几?剩下的部分是这批糖果总量的几分之几?
3.学校食堂今天中餐煮了1800个鸡蛋,分给五年级250个,五年级得到的鸡蛋占所有鸡蛋的几分之几?还剩几分之几?
4.修一条长240米的公路,修了3天后,还剩下60米没有修。已经修了全长的几分之几?
5.小明和爸爸一起去文体广场散步,爸爸走一圈6分钟,小明走一圈8分钟。他们6:30从同一地点同向而行,什么时候在出发地点再一次相遇?这时爸爸和小明各走了多少圈?
6.某市第一实验小学五(1)班有学生40~50人,将这些学生按每组6人分,正好分完,按每组8人分,也正好分完。这个班有多少人?
7.小佳喜欢集邮。她的邮票不足40张。如果每行3张、每行4张或每行6张都能摆成整行,没有剩余。小佳可能有邮票多少张?
8.一堆糖果不超过110颗,如果3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,这堆糖果一共有多少颗?
9.一瓶果汁2千克,第一次喝了它的,第二次喝了它的,还剩这瓶果汁的几分之几?
10.五年①班的同学参加学校“数学文化节”活动,班上的同学参加数独游戏,的同学参加“24点”游戏,的同学参加七巧板游戏。其余的同学被老师选派担任文化节的工作人员。
(1)五年①班参加三项数学游戏的同学一共占了班上的几分之几?
(2)五年①班担任文化节工作人员的同学占了班上的几分之几?
(3)五年①班一共有40名同学,担任文化节工作人员的同学有几人?
11.小楚妈妈去买水果,苹果买了千克,梨买了千克,香蕉买了千克,买的香蕉比苹果少多少千克?
12.有两根彩带,红彩带长米,比蓝彩带短米,蓝彩带长多少米?
13.用一根长72厘米的铁丝围成一个长方体框架,长、宽、高的比是5∶3∶1,如果要给这个长方体框架表面糊上纸皮,至少需要多大面积的纸皮?
14.一个花坛(如图),高0.7米,底面是边长1.2米的正方形,四周用砖砌成,厚度是0.2米,中间填满泥土。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛,大约需要泥土多少立方米?
(3)做这样一个花坛,四周大约需要砖多少平方米?
15.学校准备用彩钢板建一个长4米,宽3米,高2.5米的直饮水供水房(地面铺瓷砖),门窗的面积是3.8平方米。建这个供水房至少需要彩钢板多少平方米?
16.李大爷要做一个无盖长方体鱼缸。请观察下图,解答问题。(单位:dm)
(1)做成这个缸要多少玻璃?
(2)往做好的鱼缸内注入180升水,水深多少?(玻璃厚度忽略不计)
(3)往鱼缸里放入小鹅卵石和鱼,水面上升了6厘米,这些小鹅卵石和鱼的体积一共是多少?
17.一个封闭长方体玻璃容器,从里面量长10分米、宽6分米,高4分米,水深2分米(如图1)。现将容器如图2放置,图2中的水面高度是多少分米?
18.轩轩先用橡皮泥做了一个棱长为的正方体,后来他又把这个正方体做成了长,宽的长方体,那么这个长方体的高是多少厘米?
19.有两个长方体水槽,大水槽长为4分米,宽为3分米,小水槽长为3分米、宽为2分米。水槽中都盛有足够的水。有一块石头沉入大水槽后水面上升了3厘米,如果把这块石头投入小水槽,那么水面将上升几厘米?
20.李大爷将一块外形独特花岗石完全浸没在一个长60厘米,宽30厘米,高40厘米的长方体玻璃鱼缸中做装饰,量得此时水面高35厘米,将花岗石取出后,水面下降到26厘米,这块花岗石的体积是多少立方分米?
21.按要求画出图形。
(1)画出1号图形的所有对称轴。
(2)画出2号图形沿虚线对称的轴对称图形的另一半。
(3)画出3号图形向下平移6格后的图形并涂上阴影。
22.按要求在下面方格中画出图形。
①画出图形的另一半,使它成为一个轴对称图形。
②将三角形OAB绕点O顺时针方向旋转90°。
③将三角形OAB向左平移3格。
23.(1)画出图①的另一半,使它成为一个轴对称图形。
(2)将图②绕C点逆时针旋转90°,画出旋转后的图形。
(3)将旋转后的三角形向石平移5格,画出平移后的图形。
24.按要求画图。
(1)以虚线为对称轴,画出图形A的轴对称图形B。
(2)画出把图形A向下平移4格后的图形C。
(3)把原图形A向下平移_________格,再向右平移__________格,可到图形D的位置。
25.共享单车是指企业在校园、商业区、公共服务区等提供自行车单车共享服务,是一种新型绿色环保共享经济,极大地方便了人们的出行.下面的折线统计图描述了小明去图书馆看书时的时间与路程之间的关系,步行到图书馆,然后骑支付宝单车返回,请根据折线统计图解答以下问题.
(1)请写出折线统计图的特点.
(2)从折线统计图可以看出,小明家距离图书馆多少千米?小明在图书馆看书用多少小时(填带分数)?去时的步行速度是每小时多少千米?
(3)小明弟弟在小明出发20分钟后,步行去图书馆,然后在图书馆呆了30分钟,最后骑支付宝单车返回,去时速度、返回速度均与小明相同,请在图中画出相应的折线统计图.
26.王阿姨开了两个服装店,下面是两个店近几年营业额情况统计表。
年份
2011
2012
2013
2014
2015
2016
A店/万元
8
6.5
7
6.5
4
2
B店/万元
2.5
3
4
4.5
6
7
(1)请你根据表中的数据,绘制折线统计图。
(2)①A店( )年营业额最多。B店2011年至2016年营业额呈逐渐( )趋势。②( )年两个店营业额相差最多。
(3)王阿姨计划关闭一个店,转做其他生意。你认为应该关闭哪个店?为什么?
27.下面是某品牌电脑在甲、乙两家公司近几年利润变化情况统计图。
(1)根据统计图,判断一下两家公司的利润变化趋势。
(2)甲乙两公司哪一年利润相差最大?哪一年相差最小?
28.下图是莲花商场和宏伟商场在2017~2020年的利润统计图。
(1)2017~2020年,( )商场利润增长更快。
(2)( )年两个商场利润相差最大,相差( )万元。
(3)莲花商场利润的变化趋势是怎样的?预计2021年该商场在第一商场的利润情况会怎样?
1.第一组平均每人种树最多。
【分析】
求出每组每人种树多少棵,用总种树棵树除以人数,再根据分数比较大小的方法,进行解答。
【详解】
第一组每人种树:6÷5=(棵)
第二组每人种树:7÷8=(棵)
第三
解析:第一组平均每人种树最多。
【分析】
求出每组每人种树多少棵,用总种树棵树除以人数,再根据分数比较大小的方法,进行解答。
【详解】
第一组每人种树:6÷5=(棵)
第二组每人种树:7÷8=(棵)
第三组每人种树:10÷9=(棵)
=
=
=
>>
第一组>第三组>第二组
答:第一组平均每人种树最多。
【点睛】
本题考查分数与除法的关系,以及分数比较大小。
2.;
【分析】
由题干可知,剩下30-5=25千克,这批糖果总量为30+25=55千克,根据求一个数是另一个数的几分之几用除法即可。
【详解】
剩下30-5=25(千克)
卖出的是剩下的:30÷25=
解析:;
【分析】
由题干可知,剩下30-5=25千克,这批糖果总量为30+25=55千克,根据求一个数是另一个数的几分之几用除法即可。
【详解】
剩下30-5=25(千克)
卖出的是剩下的:30÷25=
剩下的部分是这批糖果总量的:25÷(30+25)
=25÷55
=
答:卖出的是剩下的,剩下的部分是这批糖果总量的。
【点睛】
此题考查的是分数除法的意义,掌握求一个数是另一个数的几分之几用除法是解题关键。
3.;
【分析】
(1)A占B的几分之几计算方法:A÷B=,结果化为最简分数;
(2)把鸡蛋总数看作单位“1”,剩下鸡蛋占总数的分率=单位“1”-五年级得到的鸡蛋占总数的分率。
【详解】
250÷180
解析:;
【分析】
(1)A占B的几分之几计算方法:A÷B=,结果化为最简分数;
(2)把鸡蛋总数看作单位“1”,剩下鸡蛋占总数的分率=单位“1”-五年级得到的鸡蛋占总数的分率。
【详解】
250÷1800=
1-=
答:五年级得到的鸡蛋占所有鸡蛋的,还剩。
【点睛】
掌握A占B的几分之几计算方法是解答题目的关键。
4.【分析】
要修240米,还有60米没修,就是修了240-60=180米,根据分数的意义,用已修的除以全长即得修好的占全长的几分之几。
【详解】
(240-60)÷240
=180÷240
=
答:
解析:
【分析】
要修240米,还有60米没修,就是修了240-60=180米,根据分数的意义,用已修的除以全长即得修好的占全长的几分之几。
【详解】
(240-60)÷240
=180÷240
=
答:已经修了全长的
【点睛】
求一个数是另一个数的几分之几,用除法。
5.6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两
解析:6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两人走一圈需要的时间,分别求出两人走的圈数即可。
【详解】
6=2×3
8=2×2×2
2×2×2×3=24(分钟)
6:30+24分钟=6:54
24÷6=4(圈)
24÷8=3(圈)
答:6:54在出发地点再一次相遇,这时爸爸走了4圈,小明走了3圈。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
6.48人
【分析】
要求这个班有多少人,即求50以内6、8的公倍数,先求出6、8的最小公倍数,再找符合条件的最小公倍数的倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×3×
解析:48人
【分析】
要求这个班有多少人,即求50以内6、8的公倍数,先求出6、8的最小公倍数,再找符合条件的最小公倍数的倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×3×2×2=24。
24×2=48(人)
答:这个班有48人。
【点睛】
此题主要考查应用两个数的公倍数的知识解决实际问题。
7.24或36张。
【分析】
由题意知:每行3张、每行4张或每行6张都能摆成整行,没有剩余,说明邮票的张数是3、4、6的倍数,而且这个倍数不能超过40,据此解答。
【详解】
3=1×3
4=2×2
6=
解析:24或36张。
【分析】
由题意知:每行3张、每行4张或每行6张都能摆成整行,没有剩余,说明邮票的张数是3、4、6的倍数,而且这个倍数不能超过40,据此解答。
【详解】
3=1×3
4=2×2
6=2×3
所以3、4、6的最小公倍数是1×2×2×3=12。
40以内12的倍数有:12、24、36。
答:小佳可能有邮票12、24或36张。
【点睛】
掌握最小公倍数的求法及指定范围内的倍数的求法是解答本题的关键。
8.108颗
【分析】
3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,说明糖果数量比5和7的公倍数多3,且是3的倍数,求出5和7的最小公倍数,再用最小公倍数分别×2、×3,确
解析:108颗
【分析】
3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,说明糖果数量比5和7的公倍数多3,且是3的倍数,求出5和7的最小公倍数,再用最小公倍数分别×2、×3,确定110以内是3的倍数的数,加3即可。
【详解】
5×7=35(颗)
35×2=70(颗)
35×3=105(颗)
105是3的倍数。
105+3=108(颗)
答:这堆糖果一共有108颗。
【点睛】
两数互质,最小公倍数是两数的积。
9.【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1
解析:
【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1”,然后根据分数减法的意义解答。
10.(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏
解析:(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏的同学一共占了班上的几分之几=担任文化节工作人员的同学占了班上的几分之几。
(3)根据分数的意义,用总人数÷全班同学的份数×担任文化节工作人员的同学的份数即可。
【详解】
(1)++
=+
=
答:五年级①班参加三项数学游戏的同学一共占了班上的。
(2)1-=
答:五年级①班担任文化节工作人员的同学占了班上的。
(3)40÷40×7=7(人)
答:担任文化节工作人员的同学有7人。
【点睛】
异分母分数相加减,先通分再计算。
11.千克
【分析】
买的苹果的数量-买的香蕉的数量即为买的香蕉比苹果少的数量。
【详解】
-=(千克)
答:买的香蕉比苹果少千克。
【点睛】
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计
解析:千克
【分析】
买的苹果的数量-买的香蕉的数量即为买的香蕉比苹果少的数量。
【详解】
-=(千克)
答:买的香蕉比苹果少千克。
【点睛】
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
12.米
【分析】
根据题目可知,红彩带比蓝彩带短米,则红彩带的长度+=蓝彩带的长度,把数代入即可求解。
【详解】
+=(米)
答:蓝彩带长米。
【点睛】
本题主要考查异分母分数加减法,要注意,分数后面加
解析:米
【分析】
根据题目可知,红彩带比蓝彩带短米,则红彩带的长度+=蓝彩带的长度,把数代入即可求解。
【详解】
+=(米)
答:蓝彩带长米。
【点睛】
本题主要考查异分母分数加减法,要注意,分数后面加单位表示具体的数。
13.184平方厘米
【分析】
由题意可知:这个长方体框架的棱长和是72分米,依据“长方体的棱长和=(长+宽+高)×4”即可求出(长+宽+高),再利用按比例分配的方法,即可分别取出长、宽、高的值;求彩纸的
解析:184平方厘米
【分析】
由题意可知:这个长方体框架的棱长和是72分米,依据“长方体的棱长和=(长+宽+高)×4”即可求出(长+宽+高),再利用按比例分配的方法,即可分别取出长、宽、高的值;求彩纸的面积,实际上是求长方体的表面积,长、宽、高已求出,从而可以分别求出其表面积。
【详解】
72÷4=18(厘米)
5+3+1=9
18×=10(厘米)
18×=6(厘米)
18-6-10
=12-10
=2(厘米)
(10×6+6×2+10×2)×2
=92×2
=184(平方厘米)
答:至少需要面积为184平方厘米的纸皮。
【点睛】
此题考查的是根据棱长总和求长方体表面积,解答此题的关键是:先据题目条件分别求出长、宽、高,进而可以求出其表面积。
14.(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为1.2米的正方形,则占地面积就是底面面积,即1.2×1.2,算出结果即可。
(2)由于填满泥土,则
解析:(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为1.2米的正方形,则占地面积就是底面面积,即1.2×1.2,算出结果即可。
(2)由于填满泥土,则求这个花坛的容积即可,由于砖的厚度是0.2米,则内部的长:1.2-0.2×2=0.8米,内部的宽:1.2-0.2×2=0.8米,内部的高:0.7米,根据长方体的体积公式:长×宽×高,把数代入公式即可求解;
(3)在花坛的四周砌砖,则求花坛四周的表面积即可,由于底面是正方形,则四周的面积大小相同,即用1.2×0.7×4,算出结果即可。
【详解】
(1)1.2×1.2=1.44(平方米)
答:这个花坛占地1.44平方米。
(2)(1.2-0.2×2)×(1.2-0.2×2)×0.7
=0.8×0.8×0.7
=0.64×0.7
=0.448(立方米)
答:大约需要泥土0.448立方米。
(3)1.2×0.7×4
=0.84×4
=3.36(平方米)
答:四周大约需要砖3.36平方米
【点睛】
求花坛的容积时,要用花坛的长和宽分别减去两个砖厚度求出内部长方体的长和宽;熟练掌握长方体的表面积和体积公式。
15.2平方米
【分析】
这个供水房需要的彩钢板面积是前后左右上5个面积的面积和-门窗面积,用长×宽+长×高×2+宽×高×2-门窗面积即可。
【详解】
4×3+4×2.5×2+3×2.5×2-3.8
=1
解析:2平方米
【分析】
这个供水房需要的彩钢板面积是前后左右上5个面积的面积和-门窗面积,用长×宽+长×高×2+宽×高×2-门窗面积即可。
【详解】
4×3+4×2.5×2+3×2.5×2-3.8
=12+20+15-3.8
=43.2(平方米)
答:建这个供水房至少需要彩钢板43.2平方米。
【点睛】
关键是掌握并灵活运用长方体表面积公式。
16.(1)213dm2
(2)4dm
(3)27dm3
【分析】
通过观察长方体的展开图,可知长方体的长是9dm,宽是5dm,高是6dm。
(1)要求出需要多少玻璃,则求出五个面的面积的和即可。
(2)
解析:(1)213dm2
(2)4dm
(3)27dm3
【分析】
通过观察长方体的展开图,可知长方体的长是9dm,宽是5dm,高是6dm。
(1)要求出需要多少玻璃,则求出五个面的面积的和即可。
(2)用水的体积除以长方体的底面积即可求出水深。
(3)小鹅卵石和鱼的体积等于上升水面的体积,所以求出上升水面的体积即可。
【详解】
(1)2×(9×6+5×6)+9×5
=2×(54+30)+45
=2×84+45
=168+45
=213(平方分米)
答:做成这个缸要213平方分米的玻璃。
(2)180升=180立方分米
180÷9÷5
=20÷5
=4(分米)
答:水深4分米。
(3)6厘米=0.6分米
9×5×0.6
=45×0.6
=27(立方分米)
答:这些小鹅卵石和鱼的体积一共是27立方分米。
【点睛】
本题考查长方体的体积公式,熟记公式是解题的关键。
17.3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10
解析:3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10)
=10×6×2÷40
=3(分米)
答:图2中的水面高度是3分米。
【点睛】
灵活运用长方体体积计算公式是解题的关键。
18.5厘米
【分析】
根据“正方体的体积=棱长×棱长×棱长”先计算出正方体的体积(即橡皮泥的体积);然后根据体积不变,进而根据“长方体的高=长方体的体积÷底面积”进行解答即可。
【详解】
6×6×6÷(
解析:5厘米
【分析】
根据“正方体的体积=棱长×棱长×棱长”先计算出正方体的体积(即橡皮泥的体积);然后根据体积不变,进而根据“长方体的高=长方体的体积÷底面积”进行解答即可。
【详解】
6×6×6÷(8×6)
=216÷48
=4.5(厘米)
答:这个长方体的高是4.5厘米。
【点睛】
解答此题的关键是抓住体积不变,根据正方体的体积计算公式和长方体的体积、底面积及高之间的关系进行解答。
19.6厘米
【解析】
【详解】
3厘米=0.3分米
4×3×0.3÷(3×2)=0.6(分米)=6(厘米)
解析:6厘米
【解析】
【详解】
3厘米=0.3分米
4×3×0.3÷(3×2)=0.6(分米)=6(厘米)
20.2立方分米
【分析】
花岗石取出后,水面下降了(35-26)厘米,这部分水的体积,就是这个花岗石的体积,由此利用长方体的体积公式代入数据即可解答。
【详解】
60×30×(35-26)
=60×30
解析:2立方分米
【分析】
花岗石取出后,水面下降了(35-26)厘米,这部分水的体积,就是这个花岗石的体积,由此利用长方体的体积公式代入数据即可解答。
【详解】
60×30×(35-26)
=60×30×9
=16200(立方厘米)
16200立方厘米=16.2立方分米
答:这块花岗石的体积是16.2立方分米。
【点睛】
考查了体积的等积变形,注意单位换算。
21.见详解
【分析】
(1)沿着直线对折能够完全重合的图形是轴对称图形,折痕所在的直线叫做轴对称图形的对称轴,画对称轴时,一般用虚线画,据此画图;
(2)先找到顶点,再找到对称点,最后描点连线即可画出对
解析:见详解
【分析】
(1)沿着直线对折能够完全重合的图形是轴对称图形,折痕所在的直线叫做轴对称图形的对称轴,画对称轴时,一般用虚线画,据此画图;
(2)先找到顶点,再找到对称点,最后描点连线即可画出对称图形的另一半;
(3)把平移的图形的各个顶点按照指定的方向和格数平移到新的位置,再把各点按原图顺序连接起来,涂色;即可。
【详解】
【点睛】
掌握画对称轴、轴对称图形和平移后图形的方法是解题的关键。
22.见详解
【分析】
①补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
②作旋转一定角度后的图形步骤:根据题目要求,确定旋转中
解析:见详解
【分析】
①补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
②作旋转一定角度后的图形步骤:根据题目要求,确定旋转中心、旋转方向和旋转角;分析所作图形,找出构成图形的关键点;找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;作出新图形,顺次连接作出的各点即可。
③作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点。
【详解】
【点睛】
决定平移后图形的位置的要素:一是平移的方向,二是平移的距离。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
23.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°,点C的位置不动,其余各部分均绕此点按相同的方向旋转相同的度数,即可画出旋转后的图形;
(3)再根据平移的特点:将旋转后的三角形向石平移5格,作图即可。
【详解】
如图所示:
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点后依次连结各特征点即可;旋转作图要注意:①旋转方向;②旋转角度;平移时要注意:大小、形状不变,只是位置变了。
24.(1)(2)见详解;(3)3;7
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,找出图形A关键点关于对称轴的对称点,依次连接即可。
(2)根据平移的特征,
解析:(1)(2)见详解;(3)3;7
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,找出图形A关键点关于对称轴的对称点,依次连接即可。
(2)根据平移的特征,把图形A的关键点分别向下平移4格,依次连接即可。
(3)找准图形的一个关键点以及平移后对应的点,根据这个点的平移方向和距离填空即可。
【详解】
(1)(2)作图如下:
(3)把原图形A向下平移3格,再向右平移7格,可到图形D的位置。
【点睛】
此题考查了补全轴对称图形以及作平移后的图形,找准关键点,数清格数认真解答即可。
25.(1)不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
(2)4km,小时,8千米/时
(3)
【详解】
(1)不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
(2)小明家距离图书
解析:(1)不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
(2)4km,小时,8千米/时
(3)
【详解】
(1)不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
(2)小明家距离图书馆4千米
由统计图的水平线的起止时间相减即可得到在图书馆看书的时间
100﹣30=70(分钟)=(小时)
运用路程4千米除以时间(30分钟=0.5小时)等于速度即可进行计算.
4÷(30÷60)=8(千米/时)
(3)
26.(1)见详解;
(2)2011;上升;2011
(3)选择关闭A店,因为A店的营业额呈现下降趋势
【分析】
(1)根据统计表中的信息,结合折线统计图的画法,直接画图即可;
(2)根据折线统计图,直接
解析:(1)见详解;
(2)2011;上升;2011
(3)选择关闭A店,因为A店的营业额呈现下降趋势
【分析】
(1)根据统计表中的信息,结合折线统计图的画法,直接画图即可;
(2)根据折线统计图,直接填空即可;
(3)根据两个店的营业额变化情况,选择关闭营业额下降的店子即可。
【详解】
(1)
(2)①A店2011年营业额最多。B店2011年至2016年营业额呈逐渐上升趋势。
②2011年两个店营业额相差最多。
(3)我认为应该选择关闭A店,因为A店的营业额呈现下降趋势。
【点睛】
本题考查了复式折线统计图,会画折线统计图是解题的关键。
27.(1)甲公司自2013年起利润持续下降,乙公司则自2013年起利润持续上升。
(2)2017年相差最大,2015年相差最小。
【分析】
(1)统计图中的折线持续上升表示利润持续上升,统计图中的折线持
解析:(1)甲公司自2013年起利润持续下降,乙公司则自2013年起利润持续上升。
(2)2017年相差最大,2015年相差最小。
【分析】
(1)统计图中的折线持续上升表示利润持续上升,统计图中的折线持续下降表示利润持续下降;
(2)同一年中甲公司和乙公司的数据相差最大利润就相差最大,数据相差最小利润就相差最小。
【详解】
据分析知:
(1)甲公司自2013年起利润持续下降,乙公司则自2013年起利润持续上升。
(2)2017年相差最大,2015年相差最小。
【点睛】
掌握观察折线统计图的方法,能从统计图中获取有用的信息,这是解决此题的关键。
28.(1)莲花
(2)2018;30
(3)莲花商场的利润持续增长。2021年该商场的利润可能会达到140万元。
【分析】
分析折线统计图后可知:(1)2017~2020年,莲花商场利润增长更快。
(
解析:(1)莲花
(2)2018;30
(3)莲花商场的利润持续增长。2021年该商场的利润可能会达到140万元。
【分析】
分析折线统计图后可知:(1)2017~2020年,莲花商场利润增长更快。
(2)2018年莲花商场利润是30万,宏伟商场利润是60万,两者相差30万。是利润相差最大的一年。
(3)莲花商场的利润将持续增长。2021年该商场的利润可能会达到140万元。
【详解】
(1)2017~2020年,莲花商场利润增长更快。
(2)2018年两个商场利润相差最大,相差30万元。
(3)莲花商场的利润将持续增长。2021年该商场的利润可能会达到140万元。
(答案不唯一)
【点睛】
能按要求从折线统计图中找到相关的信息进行数据的分析、处理、计算是解答本题的关键。
展开阅读全文