1、直线与圆二、弦长公式:直线与二次曲线相交所得的弦长1直线具有斜率,直线与二次曲线的两个交点坐标分别为,则它的弦长注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算.2当直线斜率不存在是,则.三、过两圆C1: x2 + y2 +D1x +E1y +F1 = 0和C2: x2 + y2 +D2x +E2y +F2 = 0的交点的圆系方程,一般设为 x2+y2 +D1x +E1y +F1+(x2 + y2 +D2x +E2y+F2) = 0 (为参数)此方程不包括圆C2.四、对称问题1和最小,化异侧(两边之和大于第三边,三点共线时取等号即最小值)
2、2差最大,化同侧(两边之差小于第三边,三点共线时取等号即最大值)例题分析1、如果实数满足等式,(1)求的最大值和最小值;(2)求的最大值与最小值;(3)求的最大值与最小值.2、已知两定点,动点P在直线上,当 取最小值时,这个最小值为( ).AB C D3、已知点、,点是轴上的点,求当最小时的点的坐标【解答】如图示:,考虑代数式的几何意义:即圆上的点与原点所在直线的斜率.当直线与圆相切时,斜率取得最大值和最小值,即取得最大值与最小值;即过圆上点,且斜率为的直线在轴上截距;即圆上的点到原点距离的平方. 当点位于圆与轴的左交点时,点到原点的距离最小;当点位于圆与轴的右交点时,点到原点的距离最大.解(
3、1)设为圆上一点.的几何意义为直线的斜率,设,则直线的方程为.当直线与圆相切时,斜率取最大值与最小值.圆心到直线的距离,当,即时,直线与圆相切.的最大值为,最小值为.(2)令,即,求的最大值与最小值即过圆上点,且斜率为的直线在轴上截距的最大值与最小值.当直线与圆相切时,截距取得最大值与最小值.圆心到直线的距离当,即时,直线与圆相切.的最大值为,最小值为.(3)要的最大值与最小值,即求圆上的点到原点距离的平方的最大值与最小值.当点位于圆与轴的左交点时,点到原点的距离最小;当点位于圆与轴的右交点时,点到原点的距离最大;左交点坐标为,右交点坐标为的最大值与最小值分别为,的最大值与最小值分别为,.2【
4、分析】先求出点关于直线的对称点,连接和B交直线于点P,根据三角形的两边之和大于第三边可知,此时取值最小,最小值为.根据两点间的距离公式即可求得最小值。【解答】如图示:,设点关于直线的对称点为,则解得即即的最小值为.3【分析】先求出点B关于轴的对称点,连接点A和点交x轴于P点,根据三角形的两边之和大于第三边可知,此时取值最小,最小值为,点的坐标即为与轴交点。【解答】如图示:,点B关于轴的对称点为,:与轴交点为 即为所求.直线与圆中的最值问题一、直线与圆的交点问题总是转化成圆心到直线的距离和半径之间的比较,或者是利用方程有解的问题。例1、若直线与圆(1)相交(2)相切(3)相离分别求实数a的取值范围二、圆上一点到直线距离的最值问题总是转化成求圆心到定直线的距离例2、求圆上的点到的最远、最近的距离练习:求圆C: 上的点与直线 的最大值和最小值.三、有些最值问题要注意向函数问题转化。例3、方程ax2+ay24(a1)x+4y=0表示圆,求a的取值范围,并求出其中半径最小的圆的方程.四、两个动点的最值问题总是转化成一个一定点到动点的最值问题例4、五、抓住式子的几何意义也是我们求最值的方法之一。