收藏 分销(赏)

河北省廊坊市廊坊四中2018年八年级下学期正方形的性质和判定讲义(含知识点、例题、练习题和答案).doc

上传人:精*** 文档编号:1457928 上传时间:2024-04-27 格式:DOC 页数:16 大小:344.39KB
下载 相关 举报
河北省廊坊市廊坊四中2018年八年级下学期正方形的性质和判定讲义(含知识点、例题、练习题和答案).doc_第1页
第1页 / 共16页
河北省廊坊市廊坊四中2018年八年级下学期正方形的性质和判定讲义(含知识点、例题、练习题和答案).doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述
河北省廊坊市廊坊四中2018年八年级下学期正方形的性质和判定讲义(含知识点、例题、练习题和答案) 正方形 知识精讲 一.正方形的定义 有一组邻边相等、一个内角是的平行四边形叫做正方形. 二.正方形的性质 1.正方形的四条边都相等,四个角都是直角; 2.正方形既是矩形,又是菱形,它既有矩形的性质,又有菱形的性质. 3.正方形是轴对称图形,对称轴有4条. 三.正方形的判定 1.有一组邻边相等的矩形是正方形; 2.有一个角是直角的菱形是正方形; 3.对角线互相垂直的矩形是正方形; 4.对角线相等的菱形是正方形; 5.对角线互相垂直、平分且相等的四边形是正方形; 6.四条边相等且四个角是直角的四边形是正方形. 四.弦图模型 如图1,Rt△DCE≌Rt△CAF;如图2,Rt△BAE≌Rt△CBF. 三点剖析 一.考点:1.正方形的性质;2.正方形的判定;3.弦图模型   二.重难点:正方形性质的应用和判定;弦图模型.   三.易错点:正方形、矩形、菱形性质与判定的区别. 例题讲解 一:性质 例2.1.1如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于      度. 【答案】65 【解析】∵正方形ABCD, ∴AB=AD,∠BAE=∠DAE, 在△ABE与△ADE中, , ∴△ABE≌△ADE(SAS), ∴∠AEB=∠AED,∠ABE=∠ADE, ∵∠CBF=20°, ∴∠ABE=70°, ∴∠AED=∠AEB=180°﹣45°﹣70°=65°, 例2.1.2如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为(  ) A.4 B.3 C.2+ D. 【答案】C 【解析】过点M作MF⊥AC于点F,如图所示. ∵MC平分∠ACB,四边形ABCD为正方形, ∴∠CAB=45°,FM=BM. 在Rt△AFM中,∠AFM=90°,∠FAM=45°,AM=2, ∴FM=AM•sin∠FAM=. AB=AM+MB=2+. 例2.1.3如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(  ) A.a2 B.a2 C.a2 D.a2 【答案】D 【解析】过E作EP⊥BC于点P,EQ⊥CD于点Q, ∵四边形ABCD是正方形, ∴∠BCD=90°, 又∵∠EPM=∠EQN=90°, ∴∠PEQ=90°, ∴∠PEM+∠MEQ=90°, ∵三角形FEG是直角三角形, ∴∠NEF=∠NEQ+∠MEQ=90°, ∴∠PEM=∠NEQ, ∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ,四边形PCQE是正方形, 在△EPM和△EQN中, , ∴△EPM≌△EQN(ASA) ∴S△EQN=S△EPM, ∴四边形EMCN的面积等于正方形PCQE的面积, ∵正方形ABCD的边长为a, ∴AC=a, ∵EC=2AE, ∴EC=a, ∴EP=PC=a, ∴正方形PCQE的面积=a×a=a2, ∴四边形EMCN的面积=a2, 故选:D. 例2.1.4如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG. (1)求证:△ABG≌△AFG; (2)求BG的长. 【答案】(1)证明见解析;(2)2 【解析】(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°, ∵将△ADE沿AE对折至△AFE, ∴AD=AF,DE=EF,∠D=∠AFE=90°, ∴AB=AF,∠B=∠AFG=90°, 又∵AG=AG, 在Rt△ABG和Rt△AFG中, , ∴△ABG≌△AFG(HL); (2)∵△ABG≌△AFG, ∴BG=FG, 设BG=FG=x,则GC=6﹣x, ∵E为CD的中点, ∴CE=EF=DE=3, ∴EG=3+x, ∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2, ∴BG=2. 二:判定 例2.2.1已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是(  ) A.选①② B.选②③ C.选①③ D.选②④ 【答案】B 【解析】本题考查了正方形的判定方法: ①先判定四边形是矩形,再判定这个矩形有一组邻边相等; ②先判定四边形是菱形,再判定这个矩形有一个角为直角. ③还可以先判定四边形是平行四边形,再用1或2进行判定. 要判定是正方形,则需能判定它既是菱形又是矩形. A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意; B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意; C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意; D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意. 故选:B. 例2.2.2如图,是的垂直平分线,交于点,过点作,,垂足分别为、. (1)求证:; (2)若,求证:四边形是正方形 【答案】见解析 【解析】(1)是的垂直平分线,, 又 (2), 即,四边形AEMF是矩形, 又∵∠CAB=∠DAB,ME⊥A C,MF⊥AD, 矩形是正方形 例2.2.3如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题. 请按照小萍的思路,探究并解答下列问题: (1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形; (2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值. 【答案】(1)见解析(2)6 【解析】 (1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分) ∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°. ∴∠EAF=90°.(3分) 又∵AD⊥BC, ∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分) 又∵AE=AD,AF=AD, ∴AE=AF.(5分) ∴四边形AEGF是正方形.(6分) (2)设AD=x,则AE=EG=GF=x,(7分) ∵BD=2,DC=3, ∴BE=2,CF=3. ∴BG=x-2,CG=x-3.(9分) 在Rt△BGC中,BG2+CG2=BC2 ∴(x-2)2+(x-3)2=52(11分), ∴(x-2)2+(x-3)2=52,化简得,x2-5x-6=0. 解得x1=6,x2=-1(舍), 所以AD=x=6(12分). 三:弦图 例2.3.1如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为____. 【答案】13 【解析】本题考查了全等三角形的判定、正方形的性质.实际上,此题就是将EF的长度转化为与已知长度的线段DE和BF数量关系. 根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13. ∵ABCD是正方形(已知), ∴AB=AD,∠ABC=∠BAD=90°; 又∵∠FAB+∠FBA=∠FAB+∠EAD=90°, ∴∠FBA=∠EAD(等量代换); ∵BF⊥a于点F,DE⊥a于点E, ∴在Rt△AFB和Rt△AED中, ∵, ∴△AFB≌△AED(AAS), ∴AF=DE=8,BF=AE=5(全等三角形的对应边相等), ∴EF=AF+AE=DE+BF=8+5=13. 故答案为:13. 例2.3.2如图,已知四边形ABCD是正方形,分别过A、C两点作∥,作BM⊥于M,DN⊥于N,直线MB、ND分别交于Q、P.求证:四边形PQMN是正方形. 【答案】见解析 【解析】∥,BM⊥,DN⊥, ∴, ∴四边形PQMN为矩形, ∵, ,, ∴, 又∵, ∴Rt△ABM≌Rt△DAN(HL), ∴ 同理, ∴,即. ∴四边形PQMN是正方形. 随堂练习 2.1如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是________. 【答案】45° 【解析】∵四边形ABCD是正方形, ∴AB=AD,∠BAD=90°. ∵等边三角形ADE, ∴AD=AE,∠DAE=∠AED=60°. ∠BAE=∠BAD+∠DAE=90°+60°=150°, AB=AE, ∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°, ∠BED=∠DAE﹣∠AEB=60°﹣15°=45°. 2.2如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为____ A. B. C. D.3 【答案】B 【解析】此题考查了折叠的性质、正方形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用. ∵正方形纸片ABCD的边长为3, ∴∠C=90°,BC=CD=3, 根据折叠的性质得:EG=BE=1,GF=DF, 设DF=x, 则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2, 在Rt△EFC中,EF2=EC2+FC2, 即(x+1)2=22+(3-x)2, 解得:x=, ∴DF=,EF=1+=. 故选B. 2.3如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是(  ) A.2.5 B. C. D.2 【答案】B 【解析】如图,连接AC、CF, ∵正方形ABCD和正方形CEFG中,BC=1,CE=3, ∴AC=,CF=3, ∠ACD=∠GCF=45°, ∴∠ACF=90°, 由勾股定理得,AF===2, ∵H是AF的中点, ∴CH=AF=×2=. 故选:B. 2.4如图,矩形中,,.点从向以每秒个单位的速度运动,以为一边在的右下方作正方形,同时垂直于的直线也从向D以每秒个单位的速度运动,当经过__________秒时,直线和正方形开始有公共点? 【答案】 【解析】过点作于点, 在正方形中,,,, ,, 在和中 , , 当直线和正方形开始有公共点时:, ,解得: 故当经过秒时.直线和正方形开始有公共点. 2.5如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G. (1)求证:AE=CF; (2)若∠ABE=55°,求∠EGC的大小. 【答案】(1)见解析(2)80° 【解析】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段. (1)利用△AEB≌△CFB来求证AE=CF. (2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果. (1)证明:∵四边形ABCD是正方形, ∴∠ABC=90°,AB=BC, ∵BE⊥BF, ∴∠FBE=90°, ∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°, ∴∠ABE=∠CBF, 在△AEB和△CFB中, ∴△AEB≌△CFB(SAS), ∴AE=CF. (2)解:∵BE⊥BF, ∴∠FBE=90°, 又∵BE=BF, ∴∠BEF=∠EFB=45°, ∵四边形ABCD是正方形, ∴∠ABC=90°, 又∵∠ABE=55°, ∴∠EBG=90°-55°=35°, ∴∠EGC=∠EBG+∠BEF=45°+35°=80°. 2.6如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=____. 【答案】-1 【解析】 过E作EF⊥DC于F, ∵四边形ABCD是正方形, ∴AC⊥BD, ∵CE平分∠ACD交BD于点E, ∴EO=EF, 在Rt△COE和Rt△CFE中 , ∴Rt△COE≌Rt△CFE(HL), ∴CO=FC, ∵正方形ABCD的边长为1, ∴AC=, ∴CO=AC=, ∴CF=CO=, ∴EF=DF=DC-CF=1-, ∴DE==-1, 另法:因为四边形ABCD是正方形, ∴∠ACB=45°=∠DBC=∠DAC, ∵CE平分∠ACD交BD于点E, ∴∠ACE=∠DCE=22.5°, ∴∠BCE=45°+22.5°=67.5°, ∵∠CBE=45°, ∴∠BEC=67.5°, ∴BE=BC, ∵正方形ABCD的边长为1, ∴BC=1, ∴BE=1, ∵正方形ABCD的边长为1, ∴AC=, ∴DE=-1, 故答案为:-1. 2.7如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是____ A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF 【答案】D 【解析】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键. 根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可. ∵EF垂直平分BC, ∴BE=EC,BF=CF, ∵BF=BE, ∴BE=EC=CF=BF, ∴四边形BECF是菱形; 当BC=AC时, ∵∠ACB=90°, 则∠A=45°时,菱形BECF是正方形. ∵∠A=45°,∠ACB=90°, ∴∠EBC=45° ∴∠EBF=2∠EBC=2×45°=90° ∴菱形BECF是正方形. 故选项A正确,但不符合题意; 当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意; 当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意; 当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意. 故选:D. 2.8如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE. (1)求证:BE=CE. (2)求∠BEC的度数. 【答案】(1)证明见解析;(2)30°. 【解析】(1)证明:∵四边形ABCD为正方形 ∴AB=AD=CD,∠BAD=∠ADC=90° ∵三角形ADE为正三角形 ∴AE=AD=DE,∠EAD=∠EDA=60° ∴∠BAE=∠CDE=150° 在△BAE和△CDE中, ∴△BAE≌△CDE ∴BE=CE; (2)∵AB=AD,AD=AE, ∴AB=AE, ∴∠ABE=∠AEB, 又∵∠BAE=150°, ∴∠ABE=∠AEB=15°, 同理:∠CED=15° ∴∠BEC=60°﹣15°×2=30°. 2.9如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF. (1)求证:CF是正方形ABCD的外角平分线; (2)当∠BAE=30°时,求CF的长. 【答案】(1)见解析(2) 【解析】主要考查了正方形的性质,以及全等三角形的判定和性质、特殊角的三角函数值的运用,题目的综合性较强,难度中等. (1)过点F作FG⊥BC于点G,易证△ABE≌△EGF,所以可得到AB=EG,BE=FG,由此可得到∠FCG=∠45°,即CF平分∠DCG,所以CF是正方形ABCD外角的平分线; (2)首先可求出BE的长,即FG的长,再在Rt△CFG中,利用cos45°即可求出CF的长. (1)证明:过点F作FG⊥BC于点G. ∵∠AEF=∠B=∠90°, ∴∠1=∠2. 在△ABE和△EGF中, ∴△ABE≌△EGF(AAS). ∴AB=EG,BE=FG. 又∵AB=BC, ∴BE=CG, ∴FG=CG, ∴∠FCG=∠45°, 即CF平分∠DCG, ∴CF是正方形ABCD外角的平分线. (2)∵AB=3,∠BAE=30°,tan30°==, BE=AB•tan30°=3×,即CG=. 在Rt△CFG中,cos45°=, ∴CF=. 16 / 16
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服