收藏 分销(赏)

高一数学必修一---函数知识点总结.doc

上传人:a199****6536 文档编号:1365663 上传时间:2024-04-24 格式:DOC 页数:4 大小:257KB 下载积分:5 金币
下载 相关 举报
高一数学必修一---函数知识点总结.doc_第1页
第1页 / 共4页
高一数学必修一---函数知识点总结.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型的形式; ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; ⑴单调性:定义(注意定义是相对与某个具体的区间而言) 增函数: 减函数: 注:① 函数上的区间I且x1,x2∈I.若>0(x1≠x2),则函数f(x)在区间I上是增函数; 若<0(x1≠x2),则函数f(x)是在区间I上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M,且;则 <2> 作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 任取x1,x2∈D,且x1<x2; 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)-f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 首先确定函数的定义域,并判断其是否关于原点对称; 确定f(-x)与f(x)的关系; 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . ⑵奇偶性:定义(注意区间是否关于原点对称,比较f(x) 与f(-x)的关系) f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 注:①若f(x)为偶函数,则f(x) =f(-x)= f(|x|);②若f(x)为奇函数且定义域中含0,则f(0)=0. ⑶周期性: ①若f(x+T)=f(x)且T≠0的常数,则T是函数f(x)的周期; ②若f(x+a)=f(x+b) ,a、b为常数且a≠b,则b- a是函数f(x)的周期。 1.定义 函数的周期性的定义及常用结论 一般地,对于函数f(x),如果对于定义域中的任意一个x的值. 若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期; 若f(x+a)=f(x+b)(a≠b),则f(x)是周期函数,|b-a|是它的一个周期; 2.函数的周期性的定义及常用结论 一般地,对于函数f(x),如果对于定义域中的任意一个x的值. 若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期; 若f(x+a)=f(x+b)(a≠b),则f(x)是周期函数,|b-a|是它的一个周期; 3.有关对称性的几个重要结论 一般地,对于函数f(x),如果对于定义域内的任意一个x的值. 若f(x+a)=f(b-x),则函数f(x)的图象关于直线x=对称.特别地,若f(a+x)=f(a-x),则函数f(x)的图象关于直线x=a对称; 若f(a+x)=-f(b-x),则函数f(x)的图象关于点(0, )中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)的图象关于点(a,0)中心对称. 4.对称性与周期性之间的关系 周期性与对称性是相互联系、紧密相关的.一般地,若f(x)的图象有两条对称轴x=a和x=b(a≠b),则f(x)必为周期函数,且2|b-a|是它的一个周期;若f(x)的图象有两个对称中心(a,0)和(b,0)(a≠b),则f(x)必为周期函数,且2|b-a|为它的一个周期;若f(x)的图象有一条对称轴x=a和一个对称中心(b,0)(a≠b),则f(x)为周期函数,且4|b-a|是它的一个周期. ⑷对称性:①若f(x+a)=f(b-x),则函数f(x)关于直线x=对称;( 即:‘一均二等’的原则) ②若函数y=f(x+a)和函数y=f(b-x),则函数y=f(x+a)和函数y=f(b-x)关于直线x=对称. ③你还知道函数y=f(x)关于直线x=0(即y轴),直线y=0(即x轴),原点。 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: ⑴ ⑵ 2.设函数的定义域为,则函数的定义域为_ _ 3.若函数的定义域为,则函数的定义域是 4.函数 ,若,则= 5.求下列函数的值域: ⑴ ⑵ (3) (4) 6.已知函数,求函数,的解析式 7.已知函数满足,则= 。 8.设是R上的奇函数,且当时,,则当时= 在R上的解析式为 9.求下列函数的单调区间: ⑴ ⑵ ⑶ 10.判断函数的单调性并证明你的结论. 11.设函数判断它的奇偶性并且求证:.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服