收藏 分销(赏)

2025年九年级中考数学平行四边形解答题压轴题提高专题练习及详细答案.doc

上传人:精**** 文档编号:13006694 上传时间:2026-01-04 格式:DOC 页数:25 大小:1.01MB 下载积分:8 金币
下载 相关 举报
2025年九年级中考数学平行四边形解答题压轴题提高专题练习及详细答案.doc_第1页
第1页 / 共25页
2025年九年级中考数学平行四边形解答题压轴题提高专题练习及详细答案.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
-九年级中考数学平行四边形解答题压轴题提高专题练习及详细答案 一、平行四边形 1.如图,在正方形ABCD中,E是边BC上一动点(不与点B、C重叠),连接DE、点C有关直线DE对称点为C′,连接AC′并延长交直线DE于点P,F是AC′中点,连接DF. (1)求∠FDP度数; (2)连接BP,请用等式表达AP、BP、DP三条线段之间数量关系,并证明; (3)连接AC,若正方形边长为,请直接写出△ACC′面积最大值. 【答案】(1)45°;(2)BP+DP=AP,证明详见解析;(3)﹣1. 【解析】 【分析】 (1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°; (2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论; (3)先作高线C'G,确定△ACC′面积中底边AC为定值2,根据高大小确定面积大小,当C'在BD上时,C'G最大,其△ACC′面积最大,并求此时面积. 【详解】 (1)由对称得:CD=C'D,∠CDE=∠C'DE, 在正方形ABCD中,AD=CD,∠ADC=90°, ∴AD=C'D, ∵F是AC'中点, ∴DF⊥AC',∠ADF=∠C'DF, ∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°; (2)结论:BP+DP=AP, 理由是:如图,作AP'⊥AP交PD延长线于P', ∴∠PAP'=90°, 在正方形ABCD中,DA=BA,∠BAD=90°, ∴∠DAP'=∠BAP, 由(1)可知:∠FDP=45° ∵∠DFP=90° ∴∠APD=45°, ∴∠P'=45°, ∴AP=AP', 在△BAP和△DAP'中, ∵, ∴△BAP≌△DAP'(SAS), ∴BP=DP', ∴DP+BP=PP'=AP; (3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G, Rt△ABC中,AB=BC=, ∴AC=,即AC为定值, 当C'G最大值,△AC'C面积最大, 连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重叠, ∵CD=C'D=,OD=AC=1, ∴C'G=﹣1, ∴S△AC'C=. 【点睛】 本题考察四边形综合题、正方形性质、等腰直角三角形判定和性质、全等三角形判定和性质等知识,解题关键是学会添加常用辅助线,构造全等三角形处理问题. 2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O直线分别交AB,CD边于点E,F. (1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF长. 【答案】(1)证明见解析;(2). 【解析】 分析:(1)根据平行四边形ABCD性质,判定△BOE≌△DOF(ASA),得出四边形BEDF对角线互相平分,进而得出结论; (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF长. 详解:(1)证明:∵四边形ABCD是矩形,O是BD中点, ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD, ∴∠OBE=∠ODF, 在△BOE和△DOF中, ∴△BOE≌△DOF(ASA), ∴EO=FO, ∴四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,BD⊥EF, 设BE=x,则 DE=x,AE=6-x, 在Rt△ADE中,DE2=AD2+AE2, ∴x2=42+(6-x)2, 解得:x= , ∵BD= =2, ∴OB=BD=, ∵BD⊥EF, ∴EO==, ∴EF=2EO=. 点睛:本题重要考察了矩形性质,菱形性质、勾股定理、全等三角形判定与性质,纯熟掌握矩形性质和勾股定理,证明三角形全等是处理问关键 3.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)请问EG与CG存在怎样数量关系,并证明你结论; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中结论与否仍然成立?若成立,请给出证明;若不成立,请阐明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接对应线段,问(1)中结论与否仍然成立?(请直接写出成果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)运用直角三角形斜边上中线等于斜边二分之一,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最终证出CG=EG. (3)结论仍然成立. 【详解】 (1)CG=EG.理由如下: ∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF中点,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG. (2)(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF延长线交于N点. 在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG; 在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG. ∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG. 证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF. 在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE ∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形. ∵MG=CG,∴EG=MC,∴EG=CG. (3)(1)中结论仍然成立.理由如下: 过F作CD平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又由于BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形. ∵G为CM中点,∴EG=CG,EG⊥CG 【点睛】 本题是四边形综合题.(1)关键是运用直角三角形斜边上中线等于斜边二分之一解答;(2)关键是运用了直角三角形斜边上中线等于斜边二分之一性质、全等三角形判定和性质解答. 5.如图,ABCD是正方形,点G是BC上任意一点,DE⊥AG于E,BF∥DE,交AG于F. 求证:AF=BF+EF. 【答案】详见解析. 【解析】 【分析】 由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角余角相等可得出∠ADE=∠BAF,运用AAS可得出△ABF≌△DAE;运用全等三角对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证. 【详解】 ∵ABCD是正方形, ∴AD=AB,∠BAD=90° ∵DE⊥AG, ∴∠DEG=∠AED=90° ∴∠ADE+∠DAE=90° 又∵∠BAF+∠DAE=∠BAD=90°, ∴∠ADE=∠BAF. ∵BF∥DE, ∴∠AFB=∠DEG=∠AED. 在△ABF与△DAE中, , ∴△ABF≌△DAE(AAS). ∴BF=AE. ∵AF=AE+EF, ∴AF=BF+EF. 点睛:此题考察了正方形性质,全等三角形判定与性质,矩形判定与性质,纯熟掌握判定与性质是解本题关键. 6.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G交AD于F (1)求证:AF=DE; (2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点; (3)在(2)条件下,连接CG,如图(3),求证:CG=CD. 【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析. 【解析】 【分析】 (1)证明△BAF≌△ADE(ASA)即可处理问题. (2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想措施证明AF=DF,即可处理问题. (3)延长AE,BC交于点P,由(2)知DE=CD,运用直角三角形斜边中线性质,只要证明BC=CP即可. 【详解】 (1)证明:如图1中, 在正方形ABCD中,AB=AD,∠BAD=∠D=90o, ∴∠2+∠3=90° 又∵BF⊥AE, ∴∠AGB=90° ∴∠1+∠2=90°, ∴∠1=∠3 在△BAF与△ADE中, ∠1=∠3 BA=AD ∠BAF=∠D, ∴△BAF≌△ADE(ASA) ∴AF=DE. (2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N. 由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS) ∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE, ∴DM=DN, ∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF ∴△AFG≌△DFM(AAS), ∴AF=DF=DE=AD=CD, 即点E是CD中点. (3)延长AE,BC交于点P,由(2)知DE=CD, ∠ADE=∠ECP=90°,∠DEA=∠CEP, ∴△ADE≌△PCE(ASA) ∴AE=PE, 又CE∥AB, ∴BC=PC, 在Rt△BGP中,∵BC=PC, ∴CG=BP=BC, ∴CG=CD. 【点睛】 本题属于四边形综合题,考察了正方形性质,全等三角形判定和性质,角平分线性质定理,直角三角形斜边中线性质等知识,解题关键是对寻找全等三角形处理问题,属于中考压轴题. 7.如图,正方形ABCD边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D长为? 【答案】或 【解析】 【分析】 分两种状况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=; 【详解】 如图1,当∠AB′F=90°时,此时A、B′、E三点共线, ∵∠B=90°,∴AE==10, ∵B′E=BE=6,∴AB′=4, ∵B′F=BF,AF+BF=AB=8, 在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2, ∴AF=5,BF=3, 过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2, ∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6, 在Rt△CB′N中,由勾股定理得,B′D= = ; 如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2, 过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt△CB′N中,由勾股定理得,B′D= = ; 综上,可得B′D长为或. 【点睛】 本题重要考察正方形性质与判定,矩形有性质判定、勾股定理、折叠性质等,能对地画出图形并能分类讨论是解题关键. 8.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE. (1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF周长; (2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重叠),连AH.若∠EAH=45°, 求证:EC=HG+FC. 【答案】(1);(2)证明见解析 【解析】 【分析】 (1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF周长; (2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论. 【详解】 (1)∵四边形ABCD是正方形, ∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°, ∴AC=AB=4, ∵4AF=3AC=12, ∴AF=3, ∴CF=AC﹣AF=, ∵EF⊥AC, ∴△CEF是等腰直角三角形, ∴EF=CF=,CE=CF=2, 在Rt△AEF中,由勾股定理得:AE=, ∴△AEF周长=AE+EF+AF=; (2)证明:延长GF交BC于M,连接AG,如图2所示: 则△CGM和△CFG是等腰直角三角形, ∴CM=CG,CG=CF, ∴BM=DG, ∵AF=AB, ∴AF=AD, 在Rt△AFG和Rt△ADG中, , ∴Rt△AFG≌Rt△ADG(HL), ∴FG=DG,∴BM=FG, ∵∠BAC=∠EAH=45°, ∴∠BAE=∠FAH, ∵FG⊥AC, ∴∠AFH=90°, 在△ABE和△AFH中, , ∴△ABE≌△AFH(ASA), ∴BE=FH, ∵BM=BE+EM,FG=FH+HG, ∴EM=HG, ∵EC=EM+CM,CM=CG=CF, ∴EC=HG+FC. 【点睛】 本题考察了正方形性质、全等三角形判定与性质、等腰直角三角形判定与性质、勾股定理等知识;纯熟掌握等腰直角三角形判定与性质,证明三角形全等是解题关键. 9.如图,点O是正方形ABCD两条对角线交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG. (1)如图1,若正方形OEFG对角线交点为M,求证:四边形CDME是平行四边形. (2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′; (3)在(2)条件下,正方形OE′F′G′边OG′与正方形ABCD边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α值. 【答案】(1)证明见解析;(2)证明见解析;(3)α值是22.5°或45°或112.5°或135°或157.5°. 【解析】 【分析】 (1)由四边形OEFG是正方形,得到ME=GE,根据三角形中位线性质得到CD∥GE,CD=GE,求得CD=GE,即可得到结论; (2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论; (3)分类讨论,根据三角形外角性质和等腰三角形性质即可得到结论. 【详解】 (1)证明:∵四边形OEFG是正方形, ∴ME=GE, ∵OG=2OD、OE=2OC, ∴CD∥GE,CD=GE, ∴CD=GE, ∴四边形CDME是平行四边形; (2)证明:如图2,延长E′D交AG′于H, ∵四边形ABCD是正方形, ∴AO=OD,∠AOD=∠COD=90°, ∵四边形OEFG是正方形, ∴OG′=OE′,∠E′OG′=90°, ∵将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′, ∴∠G′OD=∠E′OC, ∴∠AOG′=∠COE′, 在△AG′O与△ODE′中, , ∴△AG′O≌△ODE′ ∴AG′=DE′,∠AG′O=∠DE′O, ∵∠1=∠2, ∴∠G′HD=∠G′OE′=90°, ∴AG′⊥DE′; (3)①正方形OE′F′G′边OG′与正方形ABCD边AD相交于点N,如图3, Ⅰ、当AN=AO时, ∵∠OAN=45°, ∴∠ANO=∠AON=67.5°, ∵∠ADO=45°, ∴α=∠ANO-∠ADO=22.5°; Ⅱ、当AN=ON时, ∴∠NAO=∠AON=45°, ∴∠ANO=90°, ∴α=90°-45°=45°; ②正方形OE′F′G′边OG′与正方形ABCD边AB相交于点N,如图4, Ⅰ、当AN=AO时, ∵∠OAN=45°, ∴∠ANO=∠AON=67.5°, ∵∠ADO=45°, ∴α=∠ANO+90°=112.5°; Ⅱ、当AN=ON时, ∴∠NAO=∠AON=45°, ∴∠ANO=90°, ∴α=90°+45°=135°, Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°, 综上所述:若△AON是等腰三角形时,α值是22.5°或45°或112.5°或135°或157.5°. 【点睛】 本题重要考察了正方形性质、全等三角形判定与性质、锐角三角函数、旋转变换性质综合运用,有一定综合性,分类讨论当△AON是等腰三角形时,求α度数是本题难点. 10.如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC,且EF=EC. (1)求证:△AEF≌△DCE. (2)若DE=4cm,矩形ABCD周长为32cm,求AE长. 【答案】(1)证明见解析;(2)6cm. 【解析】 分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再运用AAS即可求证△AEF≌△DCE. (2)运用全等三角形性质,对应边相等,再根据矩形ABCD周长为32cm,即可求得AE长. 详解:(1)证明:∵EF⊥CE, ∴∠FEC=90°, ∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°, ∴∠AEF=∠ECD. 在Rt△AEF和Rt△DEC中, ∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC. ∴△AEF≌△DCE. (2)解:∵△AEF≌△DCE. AE=CD. AD=AE+4. ∵矩形ABCD周长为32cm, ∴2(AE+AE+4)=32. 解得,AE=6(cm). 答:AE长为6cm. 点睛:此题重要考察学生对全等三角形判定与性质和矩形性质等知识点理解和掌握,难易程度适中,是一道很经典题目. 11.问题情境 在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC延长线于点E,M是边AD中点,连接MB,ME. 特例探究 (1)如图1,当∠ABC=90°时,写出线段MB与ME数量关系,位置关系; (2)如图2,当∠ABC=120°时,试探究线段MB与ME数量关系,并证明你结论; 拓展延伸 (3)如图3,当∠ABC=α时,请直接用含α式子表达线段MB与ME之间数量关系. 【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.证明见解析;(3)ME=MB·tan. 【解析】 【分析】 (1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可; (2)结论:EM=MB.只要证明△EBM是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan.证明措施类似; 【详解】 (1) 如图1中,连接CM. ∵∠ACD=90°,AM=MD, ∴MC=MA=MD, ∵BA=BC, ∴BM垂直平分AC, ∵∠ABC=90°,BA=BC, ∴∠MBE=∠ABC=45°,∠ACB=∠DCE=45°, ∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=90°, ∴∠DCE=∠CDE=45°, ∴EC=ED,∵MC=MD, ∴EM垂直平分线段CD,EM平分∠DEC, ∴∠MEC=45°, ∴△BME是等腰直角三角形, ∴BM=ME,BM⊥EM. 故答案为BM=ME,BM⊥EM. (2)ME=MB. 证明如下:连接CM,如解图所示. ∵DC⊥AC,M是边AD中点, ∴MC=MA=MD. ∵BA=BC, ∴BM垂直平分AC. ∵∠ABC=120°,BA=BC, ∴∠MBE=∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°. ∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=60°, ∴∠DCE=∠DEC=60°, ∴△CDE是等边三角形, ∴EC=ED. ∵MC=MD, ∴EM垂直平分CD,EM平分∠DEC, ∴∠MEC=∠DEC=30°, ∴∠MBE+∠MEB=90°,即∠BME=90°. 在Rt△BME中,∵∠MEB=30°, ∴ME=MB. (3) 如图3中,结论:EM=BM•tan. 理由:同法可证:BM⊥EM,BM平分∠ABC, 因此EM=BM•tan. 【点睛】 本题考察四边形综合题、等腰直角三角形判定和性质、等边三角形判定和性质、等腰三角形性质、锐角三角函数等知识,解题关键是学会添加常用辅助线,灵活运用所学知识处理问题. 12.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB延长线于F. 求证:AE=AF. 【答案】见解析 【解析】 【分析】 根据同角余角相等证得∠BAF=∠DAE,再运用正方形性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形性质即可证得AF=AE. 【详解】 ∵AF⊥AE, ∴∠BAF+∠BAE=90°, 又∵∠DAE+∠BAE=90°, ∴∠BAF=∠DAE, ∵四边形ABCD是正方形, ∴AB=AD,∠ABF=∠ADE=90°, 在△ABF和△ADE中, , ∴△ABF≌△ADE(ASA), ∴AF=AE. 【点睛】 本题重要考察了正方形性质、全等三角形判定和性质等知识点,证明△ABF≌△ADE是处理本题关键. 13.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出值. 试题解析:(1)由折叠性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形判定与性质;4.矩形性质;5.综合题. 14.已知边长为1正方形ABCD中, P是对角线AC上一种动点(与点A、C不重叠),过点P作PE⊥PB ,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F. (1)当点E落在线段CD上时(如图), ①求证:PB=PE; ②在点P运动过程中,PF长度与否发生变化?若不变,试求出这个不变值,若变化,试阐明理由; (2)当点E落在线段DC延长线上时,在备用图上画出符合规定大体图形,并判断上述(1)中结论与否仍然成立(只需写出结论,不需要证明); (3)在点P运动过程中,△PEC能否为等腰三角形?假如能,试求出AP长,假如不能,试阐明理由. 【答案】(1)①证明见解析;②点PP在运动过程中,PF长度不变,值为;(2)画图见解析,成立 ;(3)能,1. 【解析】 分析:(1)①过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;②连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO长即可. (2)根据条件即可画出符合规定图形,同理可得(1)中结论仍然成立. (3)可分点E在线段DC上和点E在线段DC延长线上两种状况讨论,通过计算就可求出符合规定AP长. 详解:(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1. ∵四边形ABCD是正方形,PG⊥BC,PH⊥DC, ∴∠GPC=∠ACB=∠ACD=∠HPC=45°. ∴PG=PH,∠GPH=∠PGB=∠PHE=90°. ∵PE⊥PB即∠BPE=90°, ∴∠BPG=90°﹣∠GPE=∠EPH. 在△PGB和△PHE中, , ∴△PGB≌△PHE(ASA), ∴PB=PE. ②连接BD,如图2. ∵四边形ABCD是正方形,∴∠BOP=90°. ∵PE⊥PB即∠BPE=90°, ∴∠PBO=90°﹣∠BPO=∠EPF. ∵EF⊥PC即∠PFE=90°, ∴∠BOP=∠PFE. 在△BOP和△PFE中, ∴△BOP≌△PFE(AAS), ∴BO=PF. ∵四边形ABCD是正方形, ∴OB=OC,∠BOC=90°, ∴BC=OB. ∵BC=1,∴OB=, ∴PF=. ∴点PP在运动过程中,PF长度不变,值为. (2)当点E落在线段DC延长线上时,符合规定图形如图3所示. 同理可得:PB=PE,PF=. (3)①若点E在线段DC上,如图1. ∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°. ∵∠PBC<90°,∴∠PEC>90°. 若△PEC为等腰三角形,则EP=EC. ∴∠EPC=∠ECP=45°, ∴∠PEC=90°,与∠PEC>90°矛盾, ∴当点E在线段DC上时,△PEC不也许是等腰三角形. ②若点E在线段DC延长线上,如图4. 若△PEC是等腰三角形, ∵∠PCE=135°, ∴CP=CE, ∴∠CPE=∠CEP=22.5°. ∴∠APB=180°﹣90°﹣22.5°=67.5°. ∵∠PRC=90°+∠PBR=90°+∠CER, ∴∠PBR=∠CER=22.5°, ∴∠ABP=67.5°, ∴∠ABP=∠APB. ∴AP=AB=1. ∴AP长为1. 点睛:本题重要考察了正方形性质、等腰三角形性质、全等三角形判定与性质、角平分线性质、勾股定理、四边形内角和定理、三角形内角和定理及外角性质等知识,有一定综合性,而通过添加辅助线证明三角形全等是处理本题关键. 15.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E运动时间为t秒,△EFG和△AHC重叠部分面积为S. (1)CE= (含t代数式表达). (2)求点G落在线段AC上时t值. (3)当S>0时,求S与t之间函数关系式. (4)点P在点E出发同步从点A出发沿A-H-A以每秒2个单位长度速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t取值范围. 【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<. 【解析】 试题分析:(1)由菱形性质得出BC=AB=6得出CE=BC-BE=6-2t即可; (2)由菱形性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可; (3)分两种状况:①当<t≤2时,S=△EFG面积-△NFN面积,即可得出成果; ②当2<t≤3时,由①成果容易得出结论; (4)由题意得出t=时,点P与H重叠,E与H重叠,得出点P在△EFG内部时,t不等式,解不等式即可. 试题解析:(1)根据题意得:BE=2t, ∵四边形ABCD是菱形, ∴BC=AB=6, ∴CE=BC-BE=6-2t; (2)点G落在线段AC上时,如图1所示: ∵四边形ABCD是菱形, ∴AB=BC, ∵∠ABC=60°, ∴△ABC是等边三角形, ∴∠ACB=60°, ∵△EFG是等边三角形, ∴∠GEF=60°,GE=EF=BE•sin60°=t, ∵EF⊥AB, ∴∠BEF=90°-60°=30°, ∴∠GEB=90°, ∴∠GEC=90°, ∴CE==t, ∵BE+CE=BC, ∴2t+t=6, 解得:t=2; (3)分两种状况:①当<t≤2时,如图2所示: S=△EFG面积-△NFN面积=××(t)2-××(-+2)2=t2+t-3, 即S=t2+t-3; 当2<t≤3时,如图3所示: S=t2+t-3-(3t-6)2, 即S=-t2+t-; (4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=, ∴t=时,点P与H重叠,E与H重叠, ∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3), 解得:<t<; 即点P在△EFG内部时t取值范围为:<t<. 考点:四边形综合题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服