资源描述
2025年江西省南昌市南昌县莲塘一中高一上数学期末预测试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.已知函数,则使得成立的的取值范围是( )
A. B.
C. D.
2.若集合,,则( )
A. B.
C. D.
3.点直线中,被圆截得的最长弦所在的直线方程为()
A. B.
C. D.
4.已知函数的定义域是且满足如果对于,都有不等式的解集为
A. B.
C. D.
5.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为
A. B.
C. D.
6.已知指数函数的图象过点,则()
A. B.
C.2 D.4
7.已知函数,若实数,则函数的零点个数为()
A.0 B.1
C.2 D.3
8.角的终边经过点,则的值为()
A. B.
C. D.
9.sin()=( )
A. B.
C. D.
10.设全集,, ,则图中阴影部分表示的集合为
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.函数的单调递增区间是_________
12.函数恒过定点________.
13.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____
14.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.
15.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.
16.若函数在区间上为减函数,则实数的取值范围为________
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数,其中m为常数,且
(1)求m的值;
(2)用定义法证明在R上是减函数
18.已知函数f(x)=a-.
(1)若2f(1)=f(2),求a的值;
(2)判断f(x)在(-∞,0)上的单调性并用定义证明.
19.已知角在第二象限,且
(1)求的值;
(2)若,且为第一象限角,求的值
20.已知函数.
(1)判断函数f (x) 的奇偶性;
(2)讨论f (x) 的单调性;
(3)解不等式 .
21.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表:
空气质量指数
空气质量类别
优
良
轻度污染
中度污染
重度污染
严重污染
现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下:
甲
乙
(1)估计甲城市月份某一天空气质量类别为良的概率;
(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;
(3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明)
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、C
【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案
【详解】令,则,
,
所以,
所以,
令,则,
所以,所以,
所以在单调递增,
所以由,得,
所以,解得,
故选:C
【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.
2、A
【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.
【详解】解不等式,即,解得,则,而,
所以.
故选:A
3、A
【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.
【详解】由题意,圆,可得圆心坐标为,
要使得直线被圆截得的弦长最长,则直线必过圆心,
可得直线的斜率为,所以直线的方程为,
即所求直线的方程为.
故选:A.
4、D
【解析】令x=,y=1,则有f()=f()+f(1),
故f(1)=0;
令x=,y=2,则有f(1)=f()+f(2),
解得,f(2)=﹣1,
令x=y=2,则有f(4)=f(2)+f(2)=﹣2;
∵对于0<x<y,都有f(x)>f(y),
∴函数f(x)是定义在(0,+∞)上的减函数,
故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),
故,
解得,﹣1≤x<0.∴不等式的解集为
故选D
点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.
5、D
【解析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案
【详解】因为函数是定义域为R的偶函数,
所以函数关于轴对称,即函数关于对称,
因为函数在上单调递减,所以函数在上单调递增,
因为,所以到对称轴的距离小于到对称轴的距离,
即,,
化简可得,,解得,故选D
【点睛】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题
6、C
【解析】由指数函数过点代入求出,计算对数值即可.
【详解】因为指数函数的图象过点,
所以,即,
所以,
故选:C
7、D
【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.
【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,
故选:D.
【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.
多选题
8、D
【解析】根据三角函数定义求解即可.
【详解】因为角的终边经过点,
所以,,
所以.
故选:D
9、A
【解析】直接利用诱导公式计算得到答案.
【详解】
故选:
【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.
10、B
【解析】,阴影部分表示的集合为,选B.
二、填空题:本大题共6小题,每小题5分,共30分。
11、
【解析】设 ,或
为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.
12、
【解析】根据函数图象平移法则和对数函数的性质求解即可
【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,
因为的图象恒过定点,
所以恒过定点,
故答案为:
13、2
【解析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得.
【详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数,
由f(x+4)=-f(x) ,可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,
则f(2021)=f(5+252×8)=f(5)=f(-5)=2,
所以f(2021)=2.
故答案为:2
14、①②③④
【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.
【详解】①当时,由数域的定义可知,
若,则有,即,,故①是真命题;
②因为,若,则,则,,则2019,所以,故②是真命题;
③,当且时,则,因此只要这个数不为就一定成对出现,
所以有限数域的元素个数必为奇数,所以③是真命题;
④若,则,且时,,故④是真命题;
⑤当时,,所以偶数集不是一个数域,故⑤是假命题;
故答案为:①②③④
【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.
15、2
【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数
【详解】设扇形的半径为,则弧长为,,
所以当时取得最大值为4,此时,圆心角为(弧度)
故答案为:2
16、
【解析】分类讨论,时根据二次函数的性质求解
【详解】时,满足题意;
时,,解得,
综上,
故答案为:
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1)1;(2)证明见解析.
【解析】(1)将代入函数解析式直接计算即可;
(2)利用定义法直接证明函数的单调性即可.
【小问1详解】
由题意得,
,
解得;
【小问2详解】
由(1)知,,所以R,
R,且,
则,
因为,所以,所以,
故,即,
所以函数在R上是减函数.
18、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析
【解析】(1)由已知列方程求解;
(2)由复合函数单调性判断,根据单调性定义证明;
【小问1详解】
∵2f(1)=f(2),∴2(a-2)=a-1,
∴a=3.
【小问2详解】
f(x)在(-∞,0)上是单调递增的,证明如下:
设x1,x2∈(-∞,0),且x1<x2,则
f(x1)-f(x2)=(a-)-(a-)=-=,
∵x1,x2∈(-∞,0),∴x1x2>0.
又x1<x2,∴x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)=a-在(-∞,0)上是单调递增的.
19、(1)
(2)
【解析】(1)利用同角三角函数关系可求解得,利用诱导公式化简原式可得原式,代入即得解;
(2)利用同角三角函数关系可得,又,利用两角差的正弦公式,即得解
【小问1详解】
因为,且在第二象限,
故,所以,
原式
【小问2详解】
由题意有
故,
20、(1)奇函数(2)在上单调递增
(3)
【解析】(1)依据奇偶函数定义去判断即可;
(2)以定义法去证明函数的单调性;
(3)把抽象不等式转化为整式不等式再去求解即可.
【小问1详解】
由得,所以函数f (x)的定义域为,关于原点对称
又因为,
故函数为奇函数
【小问2详解】
设任意,,则
又,
则,则
,即
故在上单调递增
【小问3详解】
由(2)知,函数在上单调递增,
所以由,可得,
解得,所以不等式的解集为
21、(1);(2);(3)
【解析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果;
(2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果;
(3)根据题意可得出、、的大小关系.
【详解】(1)甲城市这天内空气质量类别为良的有天,则估计甲城市月份某一天空气质量类别为良的概率为;
(2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共个,
用表示“这两个数据对应的空气质量类别都为轻度污染”,
则事件包含的基本事件有:、、、,共个基本事件,
所以,;
(3)
【点睛】方法点睛:求解古典概型概率的问题有如下方法:
(1)列举法;
(2)列表法;
(3)树状图法;
(4)排列组合数的应用.
展开阅读全文