收藏 分销(赏)

2025年江西省南昌市南昌县莲塘一中高一上数学期末预测试题含解析.doc

上传人:cg****1 文档编号:12794704 上传时间:2025-12-08 格式:DOC 页数:13 大小:447.50KB 下载积分:12.58 金币
下载 相关 举报
2025年江西省南昌市南昌县莲塘一中高一上数学期末预测试题含解析.doc_第1页
第1页 / 共13页
2025年江西省南昌市南昌县莲塘一中高一上数学期末预测试题含解析.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
2025年江西省南昌市南昌县莲塘一中高一上数学期末预测试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数,则使得成立的的取值范围是( ) A. B. C. D. 2.若集合,,则( ) A. B. C. D. 3.点直线中,被圆截得的最长弦所在的直线方程为() A. B. C. D. 4.已知函数的定义域是且满足如果对于,都有不等式的解集为 A. B. C. D. 5.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为 A. B. C. D. 6.已知指数函数的图象过点,则() A. B. C.2 D.4 7.已知函数,若实数,则函数的零点个数为() A.0 B.1 C.2 D.3 8.角的终边经过点,则的值为() A. B. C. D. 9.sin()=(  ) A. B. C. D. 10.设全集,, ,则图中阴影部分表示的集合为 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的单调递增区间是_________ 12.函数恒过定点________. 13.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____ 14.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________. 15.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________. 16.若函数在区间上为减函数,则实数的取值范围为________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数,其中m为常数,且 (1)求m的值; (2)用定义法证明在R上是减函数 18.已知函数f(x)=a-. (1)若2f(1)=f(2),求a的值; (2)判断f(x)在(-∞,0)上的单调性并用定义证明. 19.已知角在第二象限,且 (1)求的值; (2)若,且为第一象限角,求的值 20.已知函数. (1)判断函数f (x) 的奇偶性; (2)讨论f (x) 的单调性; (3)解不等式 . 21.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表: 空气质量指数 空气质量类别 优 良 轻度污染 中度污染 重度污染 严重污染 现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下: 甲 乙 (1)估计甲城市月份某一天空气质量类别为良的概率; (2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率; (3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明) 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案 【详解】令,则, , 所以, 所以, 令,则, 所以,所以, 所以在单调递增, 所以由,得, 所以,解得, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式. 2、A 【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答. 【详解】解不等式,即,解得,则,而, 所以. 故选:A 3、A 【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解. 【详解】由题意,圆,可得圆心坐标为, 要使得直线被圆截得的弦长最长,则直线必过圆心, 可得直线的斜率为,所以直线的方程为, 即所求直线的方程为. 故选:A. 4、D 【解析】令x=,y=1,则有f()=f()+f(1), 故f(1)=0; 令x=,y=2,则有f(1)=f()+f(2), 解得,f(2)=﹣1, 令x=y=2,则有f(4)=f(2)+f(2)=﹣2; ∵对于0<x<y,都有f(x)>f(y), ∴函数f(x)是定义在(0,+∞)上的减函数, 故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4), 故, 解得,﹣1≤x<0.∴不等式的解集为 故选D 点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,. 5、D 【解析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案 【详解】因为函数是定义域为R的偶函数, 所以函数关于轴对称,即函数关于对称, 因为函数在上单调递减,所以函数在上单调递增, 因为,所以到对称轴的距离小于到对称轴的距离, 即,, 化简可得,,解得,故选D 【点睛】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题 6、C 【解析】由指数函数过点代入求出,计算对数值即可. 【详解】因为指数函数的图象过点, 所以,即, 所以, 故选:C 7、D 【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项. 【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个, 故选:D. 【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题. 多选题 8、D 【解析】根据三角函数定义求解即可. 【详解】因为角的终边经过点, 所以,, 所以. 故选:D 9、A 【解析】直接利用诱导公式计算得到答案. 【详解】 故选: 【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用. 10、B 【解析】,阴影部分表示的集合为,选B. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】设 ,或 为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是. 12、 【解析】根据函数图象平移法则和对数函数的性质求解即可 【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象, 因为的图象恒过定点, 所以恒过定点, 故答案为: 13、2 【解析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得. 【详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数, 由f(x+4)=-f(x) ,可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8, 则f(2021)=f(5+252×8)=f(5)=f(-5)=2, 所以f(2021)=2. 故答案为:2 14、①②③④ 【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证. 【详解】①当时,由数域的定义可知, 若,则有,即,,故①是真命题; ②因为,若,则,则,,则2019,所以,故②是真命题; ③,当且时,则,因此只要这个数不为就一定成对出现, 所以有限数域的元素个数必为奇数,所以③是真命题; ④若,则,且时,,故④是真命题; ⑤当时,,所以偶数集不是一个数域,故⑤是假命题; 故答案为:①②③④ 【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题. 15、2 【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数 【详解】设扇形的半径为,则弧长为,, 所以当时取得最大值为4,此时,圆心角为(弧度) 故答案为:2 16、 【解析】分类讨论,时根据二次函数的性质求解 【详解】时,满足题意; 时,,解得, 综上, 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)1;(2)证明见解析. 【解析】(1)将代入函数解析式直接计算即可; (2)利用定义法直接证明函数的单调性即可. 【小问1详解】 由题意得, , 解得; 【小问2详解】 由(1)知,,所以R, R,且, 则, 因为,所以,所以, 故,即, 所以函数在R上是减函数. 18、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析 【解析】(1)由已知列方程求解; (2)由复合函数单调性判断,根据单调性定义证明; 【小问1详解】 ∵2f(1)=f(2),∴2(a-2)=a-1, ∴a=3. 【小问2详解】 f(x)在(-∞,0)上是单调递增的,证明如下: 设x1,x2∈(-∞,0),且x1<x2,则 f(x1)-f(x2)=(a-)-(a-)=-=, ∵x1,x2∈(-∞,0),∴x1x2>0. 又x1<x2,∴x1-x2<0, ∴f(x1)-f(x2)<0,即f(x1)<f(x2), ∴f(x)=a-在(-∞,0)上是单调递增的. 19、(1) (2) 【解析】(1)利用同角三角函数关系可求解得,利用诱导公式化简原式可得原式,代入即得解; (2)利用同角三角函数关系可得,又,利用两角差的正弦公式,即得解 【小问1详解】 因为,且在第二象限, 故,所以, 原式 【小问2详解】 由题意有 故, 20、(1)奇函数(2)在上单调递增 (3) 【解析】(1)依据奇偶函数定义去判断即可; (2)以定义法去证明函数的单调性; (3)把抽象不等式转化为整式不等式再去求解即可. 【小问1详解】 由得,所以函数f (x)的定义域为,关于原点对称 又因为, 故函数为奇函数 【小问2详解】 设任意,,则 又, 则,则 ,即 故在上单调递增 【小问3详解】 由(2)知,函数在上单调递增, 所以由,可得, 解得,所以不等式的解集为 21、(1);(2);(3) 【解析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果; (2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果; (3)根据题意可得出、、的大小关系. 【详解】(1)甲城市这天内空气质量类别为良的有天,则估计甲城市月份某一天空气质量类别为良的概率为; (2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共个, 用表示“这两个数据对应的空气质量类别都为轻度污染”, 则事件包含的基本事件有:、、、,共个基本事件, 所以,; (3) 【点睛】方法点睛:求解古典概型概率的问题有如下方法: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服