资源描述
重庆市西南大学附属中学2025年数学高一上期末经典试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.已知函数则()
A.- B.2
C.4 D.11
2.已知,,,则
A. B.
C. D.
3.为了得到函数的图象,只需将的图象上的所有点
A.横坐标伸长2倍,再向上平移1个单位长度
B.横坐标缩短倍,再向上平移1个单位长度
C.横坐标伸长2倍,再向下平移1个单位长度
D.横坐标缩短倍,再向下平移1个单位长度
4.下列函数为奇函数的是
A. B.
C. D.
5.已知,若,则m的值为( )
A.1 B.
C.2 D.4
6.方程的解为,若,则
A. B.
C. D.
7.下列函数中,以为最小正周期的偶函数是()
A.y=sin2x+cos2x
B.y=sin2xcos2x
C.y=cos(4x+)
D.y=sin22x﹣cos22x
8.函数的零点个数为
A.1 B.2
C.3 D.4
9.已知函数,则
A.最大值为2,且图象关于点对称
B.周期为,且图象关于点对称
C.最大值为2,且图象关于对称
D.周期为,且图象关于点对称
10.已知,,,则的大小关系为
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.已知定义在上的函数,满足不等式,则的取值范围是______
12.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________
13.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________
14.已知幂函数是奇函数,则___________.
15.若点位于第三象限,那么角终边落在第___象限
16.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.如图所示,在直三棱柱中,,,,,点是中点
()求证:平面
()求直线与平面所成角的正切值
18.已知函数
(1)试判断函数在区间上的单调性,并用函数单调性定义证明;
(2)对任意时,都成立,求实数的取值范围
19.已知函数
(1)求函数的最小正周期及函数的单调递增区间;
(2)求函数在上的值域
20.已知函数的最小正周期为
(1)求当为偶函数时的值;
(2)若的图象过点,求的单调递增区间
21.已知A,B,C为的内角.
(1)若,求的取值范围;
(2)求证:;
(3)设,且,,,求证:
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、C
【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.
【详解】由题意,函数,可得,
所以.
故选:C.
【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.
2、D
【解析】容易看出,,从而可得出a,b,c的大小关系.
【详解】,,;
.
故选D.
【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.
3、B
【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论
【详解】将的图象上的所有点的横坐标缩短 倍(纵坐标不变),可得y=3sin2x的图象;
再向上平行移动个单位长度,可得函数的图象,
故选B
【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题
4、D
【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D
考点:函数的奇偶性
5、B
【解析】依题意可得,列方程解出
【详解】解:,,
故选:
6、C
【解析】令,
∵,.
∴函数在区间上有零点
∴.选C
7、D
【解析】A中,周期为,不是偶函数;
B中,周期为,函数为奇函数;
C中,周期为,函数为奇函数;
D中,周期为,函数为偶函数
8、C
【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.
【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.
故选C.
【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.
9、A
【解析】
,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A
考点:三角函数的性质.
10、A
【解析】利用利用等中间值区分各个数值的大小
【详解】;
;
故
故选A
【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待
二、填空题:本大题共6小题,每小题5分,共30分。
11、
【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式
【详解】令 ,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为
【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题
12、
【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得.
【详解】∵,
由,得,
当时,,则,解得此时,
当时,,则,解得此时,不合题意,
当取其它整数时,不合题意,
∴.
故答案:.
13、
【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值
【详解】∵函数的最小正周期为,
∴,即,
将的图象向左平移个单位长度,
所得函数为,
又所得图象关于原点对称,
∴,
即,又,
∴
故答案为:
【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法
14、1
【解析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.
【详解】由题意得,∴或1,
当时,是偶函数;
当时,是奇函数.
故答案为:1.
15、四
【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角
【详解】解:∵点位于第三象限,
∴sinθcosθ<0
2sinθ<0,
∴sinθ<0,
Cosθ>0
∴θ是第四象限的角
故答案为四
【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围
16、 ①. ②.
【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.
【详解】因为,故函数图象恒过的定点坐标为;
由题意可知,对任意的,,则,
因为函数在上单调递增,且当时,,
所以,.
当时,在上为减函数,函数为增函数,
所以,函数、在上均为减函数,
此时,函数在上为减函数,合乎题意;
当且时,,不合乎题意;
当时,在上为增函数,函数为增函数,
函数、在上均为增函数,
此时,函数在上为增函数,不合乎题意.
综上所述,若在上单调递减,.
故答案为:;.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1)见解析(2).
【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1
(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾股定理求出DE,B1E,计算tan∠DB1E
【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点
在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点,
∴OD为△ABC1的中位线,
∴OD∥AC1,
又AC1⊄平面CDB1,OD⊂平面CDB1,
∴AC1∥平面CDB1
(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,
∴∠DB1E为直线DB1与平面BCC1B1所成的角
∵D是AB的中点,∴DE,BE,∴B1E
∴tan∠DB1E
【点晴】本题考查了线面平行的判定,线面角的计算,属于中档题
18、(1)在上单调递减,证明见解析;(2).
【解析】(1)利用单调性定义:设并证明的大小关系即可.
(2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即可求的取值范围
【详解】(1)函数在区间上单调递减,以下证明:设,
∵,
∴,,,
∴,
∴在区间上单调递减;
(2)由(2)可知在上单调减函数,
∴当时,取得最小值,即,
对任意时,都成立,只需成立,
∴,解得:
19、(1)最小正周期为;单调递增区间为;(2)
【解析】(1)利用二倍角和辅助角公式化简得到,由解析式可确定最小正周期;令,解不等式可求得单调递增区间;
(2)利用可求得的范围,对应正弦函数可确定的范围,进而得到所求值域.
【详解】(1),
的最小正周期;
令,解得:,
的单调递增区间为;
(2)当时,,,
,即在上的值域为.
20、(1);(2).
【解析】(1)由为偶函数,求出的值,结合的范围,即可求解;
(2)由函数的周期求出值,将点代入解析式,结合的范围,求出,根据正弦函数的单调递增区间,整体代换,即可求出结论.
【详解】(1)当为偶函数时,,
;
(2)函数的最小正周期为,
,当时,,
将点代入得,,
,
单调递增需满足,
,
,
所以单调递增是;
当时,,
将点代入得,,
的值不存在,
综上,的单调递增区间.
【点睛】本题考查函数的性质,利用三角函数值求角,要注意角的范围,考查计算求解能力,不要忽略的正负分类讨论,是本题的易错点,属于中档题.
21、(1)
(2)证明见解析(3)证明见解析
【解析】(1)根据两角和的正切公式及均值不等式求解;
(2)先证明,
再由不等式证明即可;
(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.
【小问1详解】
,
为锐角,
,
,
解得,当且仅当时,等号成立,
即.
【小问2详解】
在中,,
, ,
.
【小问3详解】
由(2)知
,
令,
原不等式等价为,
在上为增函数,
,
,
同理可得,
,,
,
故不等式成立,
问题得证.
【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.
展开阅读全文