ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:838.50KB ,
资源ID:12793956      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12793956.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(重庆市西南大学附属中学2025年数学高一上期末经典试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

重庆市西南大学附属中学2025年数学高一上期末经典试题含解析.doc

1、重庆市西南大学附属中学2025年数学高一上期末经典试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数则() A.- B.2 C.4 D.11 2.已知,,,则   A. B. C. D. 3.为了得到函数的

2、图象,只需将的图象上的所有点 A.横坐标伸长2倍,再向上平移1个单位长度 B.横坐标缩短倍,再向上平移1个单位长度 C.横坐标伸长2倍,再向下平移1个单位长度 D.横坐标缩短倍,再向下平移1个单位长度 4.下列函数为奇函数的是 A. B. C. D. 5.已知,若,则m的值为( ) A.1 B. C.2 D.4 6.方程的解为,若,则 A. B. C. D. 7.下列函数中,以为最小正周期的偶函数是() A.y=sin2x+cos2x B.y=sin2xcos2x C.y=cos(4x+) D.y=sin22x﹣cos22x 8.函数的零点个数为

3、A.1 B.2 C.3 D.4 9.已知函数,则 A.最大值为2,且图象关于点对称 B.周期为,且图象关于点对称 C.最大值为2,且图象关于对称 D.周期为,且图象关于点对称 10.已知,,,则的大小关系为 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知定义在上的函数,满足不等式,则的取值范围是______ 12.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________ 13.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________ 14.已知幂函

4、数是奇函数,则___________. 15.若点位于第三象限,那么角终边落在第___象限 16.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图所示,在直三棱柱中,,,,,点是中点 ()求证:平面 ()求直线与平面所成角的正切值 18.已知函数 (1)试判断函数在区间上的单调性,并用函数单调性定义证明; (2)对任意时,都成立,求实数的取值范围 19.已知函数 (1)求函数的最小正周期及函数的单调递增区间; (2)求函

5、数在上的值域 20.已知函数的最小正周期为 (1)求当为偶函数时的值; (2)若的图象过点,求的单调递增区间 21.已知A,B,C为的内角. (1)若,求的取值范围; (2)求证:; (3)设,且,,,求证: 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案. 【详解】由题意,函数,可得, 所以. 故选:C. 【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与

6、求解能力. 2、D 【解析】容易看出,,从而可得出a,b,c的大小关系. 【详解】,,; . 故选D. 【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系. 3、B 【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论 【详解】将的图象上的所有点的横坐标缩短 倍(纵坐标不变),可得y=3sin2x的图象; 再向上平行移动个单位长度,可得函数的图象, 故选B 【点睛】本题主要考查函数y=Asin

7、ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题 4、D 【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D 考点:函数的奇偶性 5、B 【解析】依题意可得,列方程解出 【详解】解:,, 故选: 6、C 【解析】令, ∵,. ∴函数在区间上有零点 ∴.选C 7、D 【解析】A中,周期为,不是偶函数; B中,周期为,函数为奇函数; C中,周期为,函数为奇函数; D中,周期为,函数为偶函数 8、C 【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数. 【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交

8、点,也即有个零点. 故选C. 【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题. 9、A 【解析】 ,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A 考点:三角函数的性质. 10、A 【解析】利用利用等中间值区分各个数值的大小 【详解】; ; 故 故选A 【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】观察函数的解析式,推断函数的性质,借助函数性质解不

9、等式 【详解】令 ,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为 【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题 12、 【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得. 【详解】∵, 由,得, 当时,,则,解得此时, 当时,,则,解得此时,不合题意, 当取其它整数时,不合题意, ∴. 故答案:. 13、 【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值 【详解】∵函数的最小正周期为, ∴,即, 将的图象向左平移个单位长度

10、 所得函数为, 又所得图象关于原点对称, ∴, 即,又, ∴ 故答案为: 【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法 14、1 【解析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果. 【详解】由题意得,∴或1, 当时,是偶函数; 当时,是奇函数. 故答案为:1. 15、四 【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角 【详解】解:∵点位于第三象限, ∴sinθcosθ<0 2si

11、nθ<0, ∴sinθ<0, Cosθ>0 ∴θ是第四象限的角 故答案为四 【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围 16、 ①. ②. 【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围. 【详解】因为,故函数图象恒过的定点坐标为; 由题意可知,对任意的,,则, 因为函数在上单调递增,且当时,, 所以,. 当时,在上为减函数,函数为增函数, 所以,函数、在上均为减函数,

12、 此时,函数在上为减函数,合乎题意; 当且时,,不合乎题意; 当时,在上为增函数,函数为增函数, 函数、在上均为增函数, 此时,函数在上为增函数,不合乎题意. 综上所述,若在上单调递减,. 故答案为:;. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)见解析(2). 【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1 (2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾

13、股定理求出DE,B1E,计算tan∠DB1E 【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点 在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点, ∴OD为△ABC1的中位线, ∴OD∥AC1, 又AC1⊄平面CDB1,OD⊂平面CDB1, ∴AC1∥平面CDB1 (2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1, ∴∠DB1E为直线DB1与平面BCC1B1所成的角 ∵D是AB的中点,∴DE,BE,∴B1E ∴tan∠DB1E 【点晴】本题考查了线面平行的判定,线面角的计算,属于中档题 18、(1)在上单调递减,证明见解析;(2

14、 【解析】(1)利用单调性定义:设并证明的大小关系即可. (2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即可求的取值范围 【详解】(1)函数在区间上单调递减,以下证明:设, ∵, ∴,,, ∴, ∴在区间上单调递减; (2)由(2)可知在上单调减函数, ∴当时,取得最小值,即, 对任意时,都成立,只需成立, ∴,解得: 19、(1)最小正周期为;单调递增区间为;(2) 【解析】(1)利用二倍角和辅助角公式化简得到,由解析式可确定最小正周期;令,解不等式可求得单调递增区间; (2)利用可求得的范围,对应正弦函数可确定的范围,进而得到所求值域. 【

15、详解】(1), 的最小正周期; 令,解得:, 的单调递增区间为; (2)当时,,, ,即在上的值域为. 20、(1);(2). 【解析】(1)由为偶函数,求出的值,结合的范围,即可求解; (2)由函数的周期求出值,将点代入解析式,结合的范围,求出,根据正弦函数的单调递增区间,整体代换,即可求出结论. 【详解】(1)当为偶函数时,, ; (2)函数的最小正周期为, ,当时,, 将点代入得,, , 单调递增需满足, , , 所以单调递增是; 当时,, 将点代入得,, 的值不存在, 综上,的单调递增区间. 【点睛】本题考查函数的性质,利用三角函数值求角,

16、要注意角的范围,考查计算求解能力,不要忽略的正负分类讨论,是本题的易错点,属于中档题. 21、(1) (2)证明见解析(3)证明见解析 【解析】(1)根据两角和的正切公式及均值不等式求解; (2)先证明, 再由不等式证明即可; (3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证. 【小问1详解】 , 为锐角, , , 解得,当且仅当时,等号成立, 即. 【小问2详解】 在中,, , , . 【小问3详解】 由(2)知 , 令, 原不等式等价为, 在上为增函数, , , 同理可得, ,, , 故不等式成立, 问题得证. 【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服