资源描述
江苏省溧中、省扬中、镇江一中、江都中学、句容中学2026届数学高一第一学期期末复习检测试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.已知向量,若,则( )
A.1或4 B.1或
C.或4 D.或
2.已知,则( )
A. B.
C. D.
3.已知的图象在上存在个最高点,则的范围( )
A. B.
C. D.
4.已知()
A. B.
C. D.
5.已知实数a、b,满足,,则关于a、b下列判断正确的是()
A.a<b<2 B.b<a<2
C.2<a<b D.2<b<a
6.已知关于的方程()的根为负数,则的取值范围是( )
A. B.
C. D.
7.已知是两条不同直线,是三个不同平面,下列命题中正确的是( )
A.若则 B.若则
C.若则 D.若则
8.在平行四边形中,,,为边的中点,,则( )
A.1 B.2
C.3 D.4
9.设两条直线方程分别为,,已知,是方程的两个实根,且,则这两条直线之间的距离的最大值和最小值分别是
A. B.
C. D.
10.命题“”的否定是
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.
12.定义在上的函数则的值为______
13.已知,则_______.
14.函数的最小值为_________________
15.已知函数的部分图象如图所示,则____________
16.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:
①越大越费力,越小越省力;
②的范围为;
③当时,;
④当时,.
其中正确结论的序号是______.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.
证明:直线平面
若为的中点,为的中点,且平面平面求三棱锥的体积.
18.已知函数
(1)若函数在区间上有且仅有1个零点,求a的取值范围:
(2)若函数在区间上的最大值为,求a的值
19.已知,,且
(1)求函数的解析式;
(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值
20.已知函数是奇函数,且.
(1)求函数的解析式,并判定函数在区间上的单调性(无需证明);
(2)已知函数且,已知在的最大值为2,求的值.
21.已知函数
(1)若是偶函数,求a值;
(2)若对任意,不等式恒成立,求a的取值范围
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、B
【解析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.
【详解】由题意,向量,可得,
因为,则,解得或.
故选:B.
2、A
【解析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.
【详解】,,
因为,故,
而,
因为,故,故,
综上,,
故选:A
3、A
【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.
【详解】由题可知,解得,
则,
故选:A
【点睛】本题考查正弦函数图像的性质与周期,属于中档题.
4、D
【解析】利用诱导公式对式子进行化简,转化为特殊角的三角函数,即可得到答案;
【详解】,
故选:D
5、D
【解析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;
根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.
【详解】.
构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.
又∵,∴a>b>2
故选:D.
【点睛】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.
6、D
【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.
【详解】将化为,
因为关于的方程()的根为负数,
所以的取值范围是在的值域,
当时,,则,
即的取值范围是.
故选:D.
7、D
【解析】A项,可能相交或异面,当时,存在,,故A项错误;
B项,可能相交或垂直,当 时,存在,,故B项错误;
C项,可能相交或垂直,当 时,存在,,故C项错误;
D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.
本题主要考查的是对线,面关系的理解以及对空间的想象能力.
考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.
8、D
【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可
【详解】以坐标原点,建立平面直角坐标系,设,
则,,,,故,
由可得,即,
化简得,故,
故,,故
故选:D
9、B
【解析】两条直线之间的距离为 ,选B
点睛:求函数最值,一般通过条件将函数转化为一元函数,根据定义域以及函数单调性确定函数最值
10、C
【解析】全称命题的否定是存在性命题,所以,命题“”的否定是,选C.
考点:全称命题与存在性命题.
二、填空题:本大题共6小题,每小题5分,共30分。
11、或或
【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.
【详解】作出函数的简图如图,
令,要使关于的方程有且仅有个不同的实根,
(1)当方程有两个相等的实数根时,
由,即,此时
当,此时,此时由图可知方程有4个实数根,此时不满足.
当,此时,此时由图可知方程有6个实数根,此时满足条件.
(2)当方程有两个不同的实数根、时,则或
当时,由可得
则的根为
由图可知当时,方程有2个实数根
当时,方程有4个实数根,此时满足条件.
当时,设
由 ,则,即
综上所述:满足条件的实数a的取值范围是 或或
故答案为:或或
【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.
12、
【解析】∵定义在上的函数
∴
故答案为
点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围
13、
【解析】
将条件平方可得答案.
【详解】因为,所以,所以
故答案为:
14、
【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值
【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,
故当 cosx=1时,y有最小值等于0,
故答案为0
【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键
15、 ①. ②.
【解析】分析:先根据四分之一周期求根据最高点求.
详解:因为
因为
点睛:已知函数的图象求解析式
(1).
(2)由函数周期求
(3)利用“五点法”中相对应的特殊点求.
16、①④.
【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.
【详解】解:对于①,由为定值,
所以,
解得;
由题意知时,单调递减,所以单调递增,
即越大越费力,越小越省力;①正确.
对于②,由题意知,的取值范围是,所以②错误.
对于③,当时,,所以,③错误.
对于④,当时,,所以,④正确.
综上知,正确结论的序号是①④.
故答案为:①④.
【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)
【解析】(1)在平面图形内找到,则在立体图形中,可证面.
(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.
解法二:找到三棱锥的体积与四棱锥的体积之间的关系比值关系,先求四棱锥的体积,从而得到三棱锥的体积.
【详解】证明:如图1,中,所以.所以
也是直角三角形,
,
如图题2,所以平面.
解法一:平面平面,且平面平面 ,
平面, 平面.
取的中点为,连结则
平面,即为三棱锥的高..
解法二:平面平面,且平面平面 ,
平面,
平面.
为的中点,三棱锥的高等于.
为的中点,的面积是四边形的面积的,
三棱锥的体积是四棱锥的体积的
三棱锥的体积为.
【点睛】本题考查线面垂直的判定,面面垂直的性质,以及三棱锥体积的计算,都是对基础内容的考查,属于简单题.
18、(1)
(2)
【解析】(1)结合函数图象,分四种情况进行讨论,求出a的取值范围;(2)对对称轴分类讨论,表达出不同范围下的最大值,列出方程,求出a的值.
【小问1详解】
①,解得:,此时,零点为,0,不合题意;
②,解得:,此时,的零点为,1,不合题意;
③,解得:,当时,的零点为,不合题意;当时,的零点为,不合题意;
④,解得:,
综上:a的取值范围是
【小问2详解】
对称轴为,当,即时,在上单调递减,,舍去;
当,即时,,解得:或(舍去);
当,即时,在上单调递增,,解得:(舍去);
综上:
19、(1)(2)
【解析】(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值
试题解析:(1)
即
(2)由, , ,
,
,
此时,
考点:1.向量的数量积运算;2.三角函数化简及三角函数性质
20、(1);函数在区间上单调递减,在上单调递增
(2)或
【解析】(1)根据奇函数的性质及,即可得到方程组,求出、的值,即可得到函数解析式,再根据对勾函数的性质判断即可;
(2)分和两种情况讨论,结合对数型复合函数的单调性计算可得;
【小问1详解】
解:函数的定义域为,
是奇函数,且
,且
又
.
经检验,满足题意,
故.
当时,时等号成立,
当时,单调递减;当时,单调递增.
【小问2详解】
解:①当时,是减函数,
故当取得最小值时,且取得最大值2,
而在区间上单调递增,所以在区间上最小值为,故的最大值是,
所以.
②当时,是增函数,
故当取得最大值时,
且取得最大值2,
而在区间上单调递增,所以在区间上的最大值为,故的最大值是,
所以.
综上所述,或.
21、(1)0 (2)
【解析】(1)由偶函数的定义得出a的值;
(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围
【小问1详解】
因为是偶函数,所以,
即,故
【小问2详解】
由题意知在上恒成立,
则,又因为,所以,
则.令,则,
可得,
又因为,当且仅当时,等号成立,所以,即a的取值范围是
展开阅读全文