收藏 分销(赏)

湖南省邵阳市第十一中学2025年数学高一上期末达标检测模拟试题含解析.doc

上传人:cg****1 文档编号:12793626 上传时间:2025-12-08 格式:DOC 页数:11 大小:534.50KB 下载积分:12.58 金币
下载 相关 举报
湖南省邵阳市第十一中学2025年数学高一上期末达标检测模拟试题含解析.doc_第1页
第1页 / 共11页
湖南省邵阳市第十一中学2025年数学高一上期末达标检测模拟试题含解析.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
湖南省邵阳市第十一中学2025年数学高一上期末达标检测模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.要得到函数的图象,只需把函数的图象上所有的点() A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动个单位长度 D.向右平行移动个单位长度 2.的定义域为( ) A. B. C. D. 3.不等式的解集是() A B. C.或 D.或 4.已知函数,的最值情况为() A.有最大值,但无最小值 B.有最小值,有最大值1 C.有最小值1,有最大值 D.无最大值,也无最小值 5.幂函数的图象经过点,则() A.是偶函数,且在上单调递增 B.是偶函数,且在上单调递减 C.是奇函数,且在上单调递减 D.既不是奇函数,也不是偶函数,在上单调递增 6.下列函数中,既是偶函数又在区间上单调递增的函数是 A. B. C. D. 7. “,”是“”的( ) A.充分不必要条件 B.必要不充分条件 C 充要条件 D.既不充分也不必要条件 8.已知幂函数的图像过点,则下列关于说法正确的是( ) A.奇函数 B.偶函数 C.定义域为 D.在单调递减 9.函数的值域是 A. B. C. D. 10. “当时,幂函数为减函数”是“或2”的()条件 A.既不充分也不必要 B.必要不充分 C.充分不必要 D.充要 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,则函数的所有零点之和为________ 12.已知,则_____. 13.两平行线与的距离是__________ 14.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______ 15.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可) 16.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知集合,. (1)若,求; (2)若“”是“”的充分不必要条件,求实数a的值. 18.设,且. (1)求的值; (2)求在区间上的最大值. 19.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解 问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分 20.已知函数. (1)求函数的最小正周期; (2)求函数在区间上的最小值和最大值. 21.已知直线经过两条直线:和:的交点,直线:; (1)若,求的直线方程; (2)若,求的直线方程 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】根据三角函数图象的平移变换求解即可. 【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可. 故选:C 2、C 【解析】由对数函数的性质及分式的性质解不等式即可得解. 【详解】由题意得,解得, 所以 的定义域为. 故选:C. 【点睛】本题考查了具体函数定义域的求解,属于基础题. 3、D 【解析】将分式不等式移项、通分,再转化为等价一元二次不等式,解得即可; 【详解】解:∵,,即,等价于且,解得或,∴所求不等式的解集为或, 故选:D. 4、C 【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案. 【详解】由题意,函数, 可得函数在区间上单调递增, 所以当时,函数取得最小值,最小值为, 当时,函数取得最小值,最小值为, 故选C. 【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题. 5、D 【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案. 【详解】设幂函数的解析式为:,将代入解析式得:,解得, 所以幂函数,所以既不是奇函数,也不是偶函数, 且,所以在上单调递增. 故选:D. 6、D 【解析】选项A为偶函数,但在区间(0,+∞)上单调递减;选项B,y=x3为奇函数;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性;选项D满足题意 【详解】选项A,y=ln为偶函数,但在区间(0,+∞)上单调递减,故错误; 选项B,y=x3为奇函数,故错误; 选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性,故错误; 选项D,y=2|x|为偶函数,当x>0时,解析式可化为y=2x,显然满足在区间(0,+∞)上单调递增,故正确 故选D 【点睛】本题考查函数的奇偶性和单调性,属于基础题 7、A 【解析】根据充分条件和必要条件的定义判断. 【详解】∵ “,”可推出“”, “”不能推出“,”,例如,时,, ∴ “,”是“”充分不必要条件. 故选:A 8、D 【解析】 设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项. 【详解】设幂函数为,因为函数过点, 所以,则, 所以, 该函数定义域为,则其既不是奇函数也不是偶函数, 且由可知,该幂函数在单调递减. 故选:D. 9、C 【解析】函数中,因为所以. 有. 故选C. 10、C 【解析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可. 【详解】当时,幂函数为减函数, 所以有, 所以幂函数为减函数”是“或2”的充分不必要条件, 故选:C 二、填空题:本大题共6小题,每小题5分,共30分。 11、0 【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解. 【详解】因为函数, 所以的对称中心是, 令,得, 在同一坐标系中作出函数的图象,如图所示: 由图象知:两个函数图象有8个交点,即函数有8个零点 由对称性可知:零点之和为0, 故答案为:0 12、3 【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得. 【详解】因,所以. 故答案为:3. 13、 【解析】直接根据两平行线间的距离公式得到平行线与的距离为: 故答案为. 14、 【解析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果 【详解】因为函数是定义在上的偶函数,且在区间上单调递减, 所以, 又由, 则原不等式变形可得, 解可得:, 即的取值范围为,故答案为 【点睛】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题 15、,(答案不唯一) 【解析】由充分条件和必要条件的定义求解即可 【详解】因为当时,一定成立, 而当时,可能,可能, 所以是的充分不必要条件, 故答案为:(答案不唯一) 16、 【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可. 【详解】由已知可得为所求二面角的平面角, 设等腰直角的直角边长度为,则, 由余弦定理可得:, 则在中,, 即所求二面角大小是. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)若,求出集合、B,进而求出; (2)根据题意得到A是B的真子集,分A为空集和不为空集两种情况,求出a的取值范围. 【小问1详解】 若,则,, 所以. 【小问2详解】 因为“”是“”的充分不必要条件, 所以, ①当时,即时,不满足互异性,不符合题意; ②当时,即或时,由①可知,时,不符合题意, 当时,集合,满足,故可知符合题意.所以. 18、(1);(2)2 【解析】(1)直接由求得的值; (2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域 【详解】解:(1)∵, ∴, ∴; (2)由得, ∴函数的定义域为, , ∴当时,是增函数;当时,是减函数, ∴函数在上的最大值是 【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域 19、选①②③,答案相同,均为 【解析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同. 【详解】选①②:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以, ; 选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以, ; 20、(1);(2)最大值为,最小值为.. 【解析】(1)根据最小正周期的计算公式求解出的最小正周期; (2)先求解出的取值范围,然后根据正弦函数的单调性求解出在区间上的最值. 【详解】(1)因为,所以; (2)因为,所以, 当时,,此时, 当时,,此时, 故在区间上的最大值为,最小值为. 21、 (1) ; (2) 【解析】(1)先求出与的交点,再利用两直线平行斜率相等求直线l (2)利用两直线垂直斜率乘积等于-1求直线l 【详解】(1)由,得, ∴与的交点为. 设与直线平行的直线为, 则,∴. ∴所求直线方程为. (2)设与直线垂直的直线为, 则,解得 ∴所求直线方程为. 【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服