收藏 分销(赏)

2026届福建省福州市第一中学数学高一上期末复习检测模拟试题含解析.doc

上传人:cg****1 文档编号:12791091 上传时间:2025-12-08 格式:DOC 页数:14 大小:623KB 下载积分:12.58 金币
下载 相关 举报
2026届福建省福州市第一中学数学高一上期末复习检测模拟试题含解析.doc_第1页
第1页 / 共14页
2026届福建省福州市第一中学数学高一上期末复习检测模拟试题含解析.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
2026届福建省福州市第一中学数学高一上期末复习检测模拟试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数的部分图象大致是 A. B. C. D. 2.最小正周期为,且在区间上单调递增的函数是() A.y = sinx + cosx B.y = sinx - cosx C.y = sinxcosx D.y = 3.下列函数中,既是偶函数又在单调递增的函数是() A. B. C. D. 4.已知函数f(x)=log3(x+1),若f(a)=1,则a等于() A.0 B.1 C.2 D.3 5.若,其中,则() A. B. C. D. 6.若函数(,且)在区间上单调递增,则 A., B., C., D., 7.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是(  ) A.(4,+∞) B.(0,4) C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞) 8.对于实数,“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.条件p:|x|>x,条件q:,则p是q的() A.充要条件 B.既不充分也不必要条件 C.必要不充分条件 D.充分不必要条件 10.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知幂函数的图象过点,则_____________ 12.已知,且,写出一个满足条件的的值___________ 13.已知一等腰三角形的周长为12,则将该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为___________.(请注明函数的定义域) 14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________. 15.已知函数 ①当a=1时,函数的值域是___________; ②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________ 16.已知非零向量、满足,若,则、夹角的余弦值为_________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数 (1)求的最小正周期; (2)设,求的值域和单调递减区间 18.已知,函数. (1)求的定义域; (2)若在上的最小值为,求的值. 19.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,. (1)证明:平面; (2)求直线与平面所成的角的正弦值. 20.已知定义域为的函数是奇函数. (1)求实数a的值; (2)若不等式在有解,求实数m取值范围. 21.求经过点和,圆心在轴上的圆的方程. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断 详解:f(﹣x)==﹣f(x), ∴f(x)是奇函数,f(x)的图象关于原点对称,排除C; ,排除A, 当x>0时,f(x)=,f′(x)=, ∴当x∈(,π)时,f′(x)>0, ∴f(x)在(,π)上单调递增,排除D, 故选B 点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项. 2、B 【解析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可. 【详解】对于选项,,最小正周期为, 单调递增区间为,即, 该函数在上单调递增,则选项错误; 对于选项,,最小正周期为, 单调递增区间为,即, 该函数在上为单调递增,则选项正确; 对于选项,,最小正周期为, 单调递增区间为,即, 该函数在上为单调递增,则选项错误; 对于选项,,最小正周期为,在为单调递增,则选项错误; 故选:. 3、B 【解析】由奇偶性排除,再由增减性可选出正确答案. 【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增. 故选:B 4、C 【解析】根据,解对数方程,直接得到答案. 【详解】∵,∴a+1=3,∴a=2. 故选:C. 点睛】本题考查了解对数方程,属于基础题. 5、D 【解析】化简已知条件,结合求得的值. 【详解】依题意, , 所以,, 由于,所以. 故选:D 6、B 【解析】函数在区间上单调递增, 在区间内不等于,故 当时,函数才能递增 故选 7、A 【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可. 【详解】令, ∵方程的一根小于,另一根大于, ∴,即,解得, 即实数的取值范围是,故选A. 【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查 8、B 【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B 考点:不等式的性质 点评:充分利用不等式的基本性质是推导不等关系的重要条件 9、D 【解析】解不等式得到p:,q:或,根据推出关系得到答案. 【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件 故答案为:D 10、B 【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得. 【详解】函数的最小正周期, ∴,解得:, 由于是函数的一条对称轴,且为的一个对称中心, ∴,(),则,(),则, 又∵,,由于,∴,故, ∵,∴,∴,∴. 故选:B 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】设出幂函数解析式,代入已知点坐标求解 【详解】设,由已知得,所以, 故答案为: 12、π(答案不唯一) 【解析】利用,可得,又,确定可得结果. 【详解】因为,所以,,则,或,,又 ,故满足要求 故答案为:π(答案不唯一) 13、 【解析】根据题意得,再结合两边之和大于第三边,底边长大于得,进而得答案. 【详解】解:根据题意得, 由三角形两边之和大于第三边得, 所以,即, 又因为,解得 所以该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为 故答案为: 14、 【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果. 【详解】由弧长公式可得,可得, 所以,由和线段所围成的弓形的面积为, 而勒洛三角形由三个全等的弓形以及一个正三角形构成, 因此,该勒洛三角形的面积为. 故答案为:. 15、 ①.(-∞,1] ②.(-1,1] 【解析】①分段求值域,再求并集可得的值域; ②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围 【详解】①当a=1时,即当x≤1时,, 当x>1时,, 综上所述当a=1时,函数的值域是, ②由无解, 故=在上与直线只有一个公共点, 则有一个零点,即实数的取值范围是. 故答案为:;. 16、 【解析】本题首先可以根据得出,然后将其化简为,最后带入即可得出结果. 【详解】令向量与向量之间的夹角为, 因为,所以, 即,,,, 因为,所以, 故答案为:. 【点睛】本题考查向量垂直的相关性质,若两个向量垂直,则这两个向量的数量积为,考查计算能力,考查化归与转化思想,是简单题。 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2)的值域为,的递减区间为 【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可; (2)先根据的范围求得,再结合正弦函数的性质可得到函数的值域,求得单调递减区间 【详解】(1) (2)∵, ,的值域为, 当,即,时, 单调递减,且, 所以的递减区间为 18、(1) ; (2) . 【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域; (2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解 【详解】(1)由题意,函数, 满足 ,解得,即函数的定义域为 (2)由, 设,则表示开口向下,对称轴的方程为, 所以在上为单调递增函数,在单调递减, 根据复合函数的单调性,可得 因为,函数在为单调递增函数,在单调递减, 所以,解得; 故实数的值为 【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题 19、(1)详见解析;(2). 【解析】(1)连接交于点,连接,,可证明四边形是平行四边形,从而,再由线面平行的判定即可求解;(2)作出平面的垂线,即可作出线面角,求出相关线段的长度即可求解. 试题解析:(1)连接交于点,连接,,∵为菱形,∴点在上, 且,又∵,故四边形是平行四边形,则, ∴平面;(2)由于为菱形,∴, 又∵是直四棱柱,∴,平面, ∴平面平面,过点作平面和平面交线的垂线,垂足为,得平面,连接,则是直线平面所成的角, 设,∵是菱形且,则,, 在中,由,,得, 在中,由,,得, ∴. 考点:1.线面平行的判定;2.线面角的求解. 20、(1);(2). 【解析】(1)函数是上的奇函数,利用,注意检验求出的是否满足题意;(2)由(1)得,把不等式在有解转化为在有解,构造函数,利用基本不等式求解即可. 【详解】(1)由为上的奇函数, 所以, 则,检验如下: 当,, , 则函数为上的奇函数. 所以实数a的值. (2)由(1)知, 则, 由得:, 因为, 等价于在有解, 则, 令, 设 , 当且仅当或(舍)取等号; 则, 所以实数m取值范围. 【点睛】关键点睛:把不等式在有解转化为在有解,构造函数出是解决本题的关键. 21、. 【解析】根据条件得到,设圆心为,根据点点距列出式子即可,求得参数值 解析: 圆的圆心在轴上,设圆心为, 由圆过点和, 由可得,即,求得, 可得圆心为, 半径为, 故圆的方程为. 点睛:这个题目考查了圆的方程的求法,利用圆的定义得到圆上的点到圆心的距离相等,可列出式子.一般和圆有关的多数是利用圆的几何性质,垂径定理列出方程,利用切线的性质即切点和圆心的连线和切线垂直列式子.注意观察式子的特点
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服