收藏 分销(赏)

湖南省长沙市周南梅溪湖中学2025年数学高一第一学期期末监测试题含解析.doc

上传人:y****6 文档编号:12790542 上传时间:2025-12-08 格式:DOC 页数:15 大小:726.50KB 下载积分:12.58 金币
下载 相关 举报
湖南省长沙市周南梅溪湖中学2025年数学高一第一学期期末监测试题含解析.doc_第1页
第1页 / 共15页
湖南省长沙市周南梅溪湖中学2025年数学高一第一学期期末监测试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
湖南省长沙市周南梅溪湖中学2025年数学高一第一学期期末监测试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若点、、在同一直线上,则() A. B. C. D. 2.若直线经过两点,,且倾斜角为,则的值为( ) A.2 B.1 C. D. 3.已知,,c=40.1,则( ) A. B. C. D. 4.从数字中随机取两个不同的数,分别记为和,则为整数的概率是( ) A. B. C. D. 5.过点且与直线平行的直线方程是( ) A. B. C. D. 6.设为定义在上的偶函数,且在上为增函数,则的大小顺序是() A. B. C. D. 7.在上,满足的的取值范围是( ) A. B. C. D. 8.如图,AB为半圆的直径,点C为的中点,点M为线段AB上的一点(含端点A,B),若,则的取值范围是() A. B. C. D. 9.函数有( ) A.最大值 B.最小值 C.最大值2 D.最小值2 10.已知棱长为的正方体ABCD﹣A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为(  ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的最小值为__________ 12.若是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号) ①若直线,则在平面内,一定不存在与直线平行的直线 ②若直线,则在平面内,一定存在无数条直线与直线垂直 ③若直线,则在平面内,不一定存在与直线垂直的直线 ④若直线,则在平面内,一定存在与直线垂直的直线 13.角的终边经过点,且,则________. 14.设角的顶点与坐标原点重合,始边与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________ 15.求值:__________ 16.已知函数是R上的减函数,则实数a的取值范围为_______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表: t 50 110 250 Q 150 108 150 (1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并说明理由; (2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本. 18.如图,在扇形OAB中,半径OA=1,圆心角C是扇形弧上的动点,矩形CDEF内接于扇形,且OE=OF.记∠AOC=θ,求当角θ为何值时,矩形CDEF的面积S最大?并求出这个最大的面积. 19.已知. (1)若为锐角,求的值. (2)求的值. 20.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表: v 0 40 60 80 120 Q 0.000 6.667 8.125 10.000 20.000 为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③. (1)选出你认为最符合实际的函数模型,并说明理由; (2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少? 21.已知函数. (1)若为偶函数,求实数m的值; (2)当时,若不等式对任意恒成立,求实数a的取值范围; (3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】利用结合斜率公式可求得实数的值. 【详解】因为、、在同一直线上,则,即,解得. 故选:A. 2、A 【解析】直线经过两点,,且倾斜角为,则 故答案为A. 3、A 【解析】利用指对数函数的性质判断指对数式的大小. 【详解】由, ∴. 故选:A. 4、B 【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率. 【详解】解:从数字中随机取两个不同的数, 则有种选法,有种选法,共有种情况; 则满足为整数的情况如下: 当时,或有种情况; 当时,有种情况; 当或时,则不可能为整数, 故共有种情况, 故为整数的概率是:. 故选:B. 5、D 【解析】先由题意设所求直线为:,再由直线过点,即可求出结果. 【详解】因为所求直线与直线平行,因此,可设所求直线为:, 又所求直线过点, 所以,解得, 所求直线方程为:. 故选D 【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型. 6、A 【解析】根据单调性结合偶函数性质,进行比较大小即可得解. 【详解】因为为偶函数, 所以 又在上为增函数, 所以, 所以 故选:A 7、B 【解析】根据的函数图象结合特殊角的三角函数值,即可容易求得结果. 【详解】根据的图象可知:当时,或, 数形结合可知: 当,得 故选:. 【点睛】本题考查利用三角函数的图象解不等式,属简单题. 8、D 【解析】根据题意可得出,然后根据向量的运算得出,从而可求出答案. 【详解】因为点C为的中点,,所以, 所以 , 因为点M为线段AB上的一点,所以,所以, 所以的取值范围是, 故选:D. 9、D 【解析】分离常数后,用基本不等式可解. 【详解】(方法1),,则,当且仅当,即时,等号成立. (方法2)令,,,. 将其代入,原函数可化为,当且仅当,即时等号成立,此时. 故选:D 10、A 【解析】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,即可得出结论 【详解】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在线段AB1,AC,AD1上,设线段AB1上的切点为E,AC1∩面A1BD=O2,圆柱上底面的圆心为O1,半径即为O1E=r,则,由O1E∥O2F知,则圆柱的高为,当且仅当r=取等号 故选A 【点睛】本题考查求圆柱侧面积的最大值,考查正方体与圆柱的内切问题,考查学生空间想象与分析解决问题的能力,属于中档题 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】 所以,当,即时,取得最小值. 所以答案应填:. 考点:1、对数的运算;2、二次函数的最值. 12、②④ 【解析】①当时,在平面内存在与直线平行的直线.②若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.③当直线为平面的交线时,在平面内一定存在与直线垂直的直线.④当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线 考点:直线与平面平行与垂直关系 13、 【解析】由题意利用任意角的三角函数的定义直接计算 【详解】角的终边经过点,且, 解得. 故答案为: 14、##0.5 【解析】利用余弦函数的定义即得. 【详解】∵角的终边上一点的坐标为, ∴. 故答案为:. 15、 【解析】直接利用两角和的正切公式计算可得; 【详解】解: 故答案为: 16、 【解析】由已知结合分段函数的性质及一次函数的性质,列出关于a的不等式,解不等式组即可得解. 【详解】因为函数是R上的减函数 所以需满足,解得,即 所以实数a的取值范围为 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)选用二次函数Q=at2+bt+c进行描述,理由见解析;(2)150(天),100(元/10kg). 【解析】(1)由所提供的数据和函数的单调性得出应选函数,再代入数据可得芦荟种植成本Q与上市时间t的变化关系的函数. (2)由二次函数的性质可以得出芦荟种植成本最低成本. 【详解】(1)由所提供的数据可知,刻画芦荟种植成本Q与上市时间t的变化关系的函数不可能是常数函数, 若用函数Q=at+b,Q=a·bt,Q=alogbt中的任意一个来反映时都应有a≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合, 所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,可得: ,解得. 所以,刻画芦荟种植成本Q与上市时间t变化关系的函数. (2)当时,芦荟种植成本最低为 (元/10kg). 【点睛】本题考查求回归方程,以及回归方程的应用,属于中档题. 18、当时,矩形的面积最大为 【解析】由点向作垂线,垂足为,利用平面几何知识得到为等边三角形,然后利用表示出和,从而得到矩形的面积,利用三角函数求最值进行分析求解,即可得到答案 【详解】解:由点向作垂线,垂足为, 在中,,, 由题意可知,,, 所以为等边三角形, 所以, 则, 所以, 所以, , 所以矩形的面积为 , 因为,所以当,即时,最大为 所以当时,矩形的面积最大为 19、(1) (2) 【解析】(1)根据题意和求得,结合两角和的余弦公式计算即可; (2)根据题意和可得,利用二倍角的正切公式求出,结合两角和的正切公式计算即可. 【小问1详解】 由,为锐角,, 得, ∴ ; 【小问2详解】 由得, 则, ∴ 20、(1)最符合实际的模型为①,理由见解析 (2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少 【解析】(1)根据定义域和单调性来判断; (2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可. 【小问1详解】 依题意,所选的函数必须满足两个条件: 定义域为,且在区间上单调递增. 由于模型③定义域不可能是. 而模型②在区间上是减函数. 因此,最符合实际的模型为①. 【小问2详解】 设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有. ∵,, ∴, 它是一个关于v的开口向上的二次函数,其对称轴为,且, ∴当时,y有最小值. 由题设表格知,当时,,,. ∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少. 21、(1)-1;(2); (3) 【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明; (2)记,判断出在上单增,列不等式组求出实数a的取值范围; (3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围. 【小问1详解】 定义域为R. 因为为偶函数,所以,即,解得:m=-1. 此时, 所以 所以偶函数, 所以m= -1. 【小问2详解】 当时,不等式可化为:, 即对任意恒成立. 记,只需. 因为在上单增,在上单增, 所以在上单增, 所以, 所以,解得:, 即实数a的取值范围为. 【小问3详解】 当时,在R上单增,在R上单增,所以在R上单增且. 则可化为. 又因为在R上单增,所以,换底得: ,即. 令,则,问题转化为在上有两根, 即, 令,,分别作出图像如图所示: 只需,解得:. 即实数m的取值范围为. 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服