资源描述
第二篇熟练规范,中等大题保高分,第,25,练空间中平行与垂直,1/60,明考情,高考中对直线和平面平行、垂直关系交汇综合命题,多以棱柱、棱锥、棱台或简单组合体为载体进行考查,难度中等偏下,.,知考向,1.,空间中平行关系,.,2.,空间中垂直关系,.,3.,平行和垂直综合应用,.,2/60,研透考点,关键考点突破练,栏目索引,规范解答,模板答题规范练,3/60,研透考点,关键考点突破练,考点一空间中平行关系,方法技巧,(1),平行关系基础是线线平行,比较常见是利用三角形中位线结构平行关系,利用平行四边形结构平行关系,.,(2),证实过程中要严格遵照定理中条件,注意推证严谨性,.,4/60,1.,如图,在正方体,ABCD,A,1,B,1,C,1,D,1,中,点,N,在,BD,上,点,M,在,B,1,C,上,且,CM,DN,,求证:,MN,平面,AA,1,B,1,B,.,证实,1,2,3,4,5/60,证实,如图所表示,作,ME,BC,交,BB,1,于点,E,,作,NF,AD,交,AB,于点,F,,连接,EF,,,则,EF,平面,AA,1,B,1,B,.,ME,BC,,,NF,AD,,,在正方体,ABCD,A,1,B,1,C,1,D,1,中,,CM,DN,,,B,1,M,NB,.,又,BC,AD,,,ME,NF,.,1,2,3,4,6/60,1,2,3,4,又,ME,BC,AD,NF,,,四边形,MEFN,为平行四边形,,MN,EF,.,又,EF,平面,AA,1,B,1,B,,,MN,平面,AA,1,B,1,B,,,MN,平面,AA,1,B,1,B,.,7/60,2.(,全国,),如图,在四棱锥,P,ABCD,中,,AB,CD,,且,BAP,CDP,90.,(1),证实:平面,PAB,平面,PAD,;,1,2,3,4,证实,证实,由已知,BAP,CDP,90,,,得,AB,PA,,,CD,PD,.,因为,AB,CD,,故,AB,PD,,从而,AB,平面,PAD,.,又,AB,平面,PAB,,,所以平面,PAB,平面,PAD,.,8/60,(2),若,PA,PD,AB,DC,,,APD,90,,且四棱锥,P,ABCD,体积为,,求该四棱锥侧面积,.,1,2,3,4,解答,9/60,解,如图,在平面,PAD,内作,PE,AD,,垂足为,E,.,由,(1),知,,AB,平面,PAD,,故,AB,PE,,,AB,AD,,,所以,PE,平面,ABCD,.,可得四棱锥,P,ABCD,侧面积为,1,2,3,4,10/60,3.(,龙岩市新罗区校级模拟,),如图,,O,是圆锥底面圆圆心,圆锥轴截面,PAB,为等腰直角三角形,,C,为底面圆周上一点,.,(1),若弧,BC,中点为,D,,求证:,AC,平面,POD,;,1,2,3,4,证实,11/60,证实,方法一,设,BC,OD,E,,,D,是弧,BC,中点,,E,是,BC,中点,.,又,O,是,AB,中点,,AC,OE,.,又,AC,平面,POD,,,OE,平面,POD,,,AC,平面,POD,.,方法二,AB,是底面圆直径,,AC,BC,.,弧,BC,中点为,D,,,OD,BC,.,又,AC,,,OD,共面,,AC,OD,.,又,AC,平面,POD,,,OD,平面,POD,,,AC,平面,POD,.,1,2,3,4,12/60,1,2,3,4,(2),假如,PAB,面积是,9,,求此圆锥表面积,.,解答,解,设圆锥底面半径为,r,,高为,h,,母线长为,l,,,圆锥轴截面,PAB,为等腰直角三角形,,13/60,4.,如图,在直四棱柱,ABCD,A,1,B,1,C,1,D,1,中,底面,ABCD,为等腰梯形,,AB,CD,,且,AB,2,CD,,在棱,AB,上是否存在一点,F,,使平面,C,1,CF,平面,ADD,1,A,1,?若存在,求点,F,位置;若不存在?请说明理由,.,1,2,3,4,解答,14/60,解,存在这么点,F,,使平面,C,1,CF,平面,ADD,1,A,1,,此时点,F,为,AB,中点,证实以下:,AB,CD,,,AB,2,CD,,,AF,綊,CD,,,四边形,AFCD,是平行四边形,,AD,CF,.,又,AD,平面,ADD,1,A,1,,,CF,平面,ADD,1,A,1,,,CF,平面,ADD,1,A,1,.,又,CC,1,DD,1,,,CC,1,平面,ADD,1,A,1,,,DD,1,平面,ADD,1,A,1,,,CC,1,平面,ADD,1,A,1,.,又,CC,1,,,CF,平面,C,1,CF,,,CC,1,CF,C,,,平面,C,1,CF,平面,ADD,1,A,1,.,1,2,3,4,15/60,考点二空间中垂直关系,方法技巧,判定直线与平面垂直惯用方法,(1),利用线面垂直定义,.,(2),利用线面垂直判定定理,一条直线与平面内两条相交直线都垂直,则这条直线与平面垂直,.,(3),利用线面垂直性质,两平行线中一条垂直于平面,则另一条也垂直于这个平面,.,(4),利用面面垂直性质定理,两平面垂直,在一个平面内垂直于交线直线必垂直于另一个平面,.,16/60,5.,如图所表示,已知,AB,平面,ACD,,,DE,平面,ACD,,,ACD,为等边三角形,,AD,DE,2,AB,,,F,为,CD,中点,.,求证:,(1),AF,平面,BCE,;,5,6,7,8,证实,17/60,证实,如图,取,CE,中点,G,,连接,FG,,,BG,.,5,6,7,8,AB,平面,ACD,,,DE,平面,ACD,,,AB,DE,,,GF,AB,.,四边形,GFAB,为平行四边形,,AF,BG,.,AF,平面,BCE,,,BG,平面,BCE,,,AF,平面,BCE,.,18/60,(2),平面,BCE,平面,CDE,.,证实,ACD,为等边三角形,,F,为,CD,中点,,AF,CD,.,DE,平面,ACD,,,AF,平面,ACD,,,DE,AF,.,又,CD,DE,D,,故,AF,平面,CDE,.,BG,AF,,,BG,平面,CDE,.,BG,平面,BCE,,,平面,BCE,平面,CDE,.,5,6,7,8,证实,19/60,6.(,全国,),如图,在四面体,ABCD,中,,ABC,是正三角形,,AD,CD,.,(1),证实:,AC,BD,;,5,6,7,8,证实,如图,取,AC,中点,O,,连接,DO,,,BO,.,因为,AD,CD,,所以,AC,DO,.,又因为,ABC,是正三角形,,所以,AC,BO,.,又,DO,OB,O,,,所以,AC,平面,DOB,,故,AC,BD,.,证实,20/60,5,6,7,8,解答,(2),已知,ACD,是直角三角形,,AB,BD,,若,E,为棱,BD,上与,D,不重合点,且,AE,EC,,求四面体,ABCE,与四面体,ACDE,体积比,.,21/60,解,连接,EO,.,由,(1),及题设知,ADC,90,,所以,DO,AO,.,在,Rt,AOB,中,,BO,2,AO,2,AB,2,.,又,AB,BD,,,所以,BO,2,DO,2,BO,2,AO,2,AB,2,BD,2,,故,DOB,90.,即四面体,ABCE,与四面体,ACDE,体积之比为,1,1.,5,6,7,8,22/60,7.(,南京一模,),如图,在六面体,ABCDE,中,平面,DBC,平面,ABC,,,AE,平面,ABC,.,(1),求证:,AE,平面,DBC,;,证实,过点,D,作,DO,BC,,,O,为垂足,.,平面,DBC,平面,ABC,,,平面,DBC,平面,ABC,BC,,,DO,平面,DBC,,,DO,平面,ABC,.,又,AE,平面,ABC,,则,AE,DO,.,又,AE,平面,DBC,,,DO,平面,DBC,,故,AE,平面,DBC,.,5,6,7,8,证实,23/60,(2),若,AB,BC,,,BD,CD,,求证:,AD,DC,.,证实,由,(1),知,,DO,平面,ABC,,,AB,平面,ABC,,,DO,AB,.,又,AB,BC,,且,DO,BC,O,,,DO,,,BC,平面,DBC,,,AB,平面,DBC,.,DC,平面,DBC,,,AB,DC,.,又,BD,CD,,,AB,DB,B,,,AB,,,DB,平面,ABD,,,则,DC,平面,ABD,.,又,AD,平面,ABD,,故可得,AD,DC,.,5,6,7,8,证实,24/60,8.,已知四棱锥,S,ABCD,底面,ABCD,为正方形,顶点,S,在底面,ABCD,上射影为其中心,O,,高为,,设,E,,,F,分别为,AB,,,SC,中点,且,SE,2,,,M,为,CD,边上点,.,(1),求证:,EF,平面,SAD,;,证实,取,SB,中点,P,,连接,PF,,,PE,.,F,为,SC,中点,,PF,BC,,又底面,ABCD,为正方形,,BC,AD,,即,PF,AD,,又,PE,SA,,,平面,PFE,平面,SAD,.,EF,平面,PFE,,,EF,平面,SAD,.,5,6,7,8,证实,25/60,解答,5,6,7,8,(2),试确定点,M,位置,使得平面,EFM,底面,ABCD,.,26/60,解,连接,AC,,,AC,中点即为点,O,,连接,SO,,,由题意知,SO,平面,ABCD,,,取,OC,中点,H,,连接,FH,,则,FH,SO,,,FH,平面,ABCD,,,平面,EFH,平面,ABCD,,连接,EH,并延长,,则,EH,与,DC,交点即为,M,点,.,OE,1,,,AB,2,,,AE,1,,,5,6,7,8,27/60,考点三平行和垂直综合应用,方法技巧,空间平行、垂直关系证实主要思想是转化,即经过判定、性质定理将线线、线面、面面之间平行、垂直关系相互转化,.,28/60,9,10,11,12,9.,如图,在四棱锥,P,ABCD,中,平面,PAD,平面,ABCD,,,AB,AD,,,BAD,60,,,E,,,F,分别是,AP,,,AD,中点,.,求证:,(1),直线,EF,平面,PCD,;,证实,在,PAD,中,,E,,,F,分别为,AP,,,AD,中点,,EF,PD,.,又,EF,平面,PCD,,,PD,平面,PCD,,,直线,EF,平面,PCD,.,证实,29/60,(2),平面,BEF,平面,PAD,.,证实,如图,连接,BD,.,AB,AD,,,BAD,60,,,ADB,为正三角形,.,F,是,AD,中点,,BF,AD,.,平面,PAD,平面,ABCD,,,平面,PAD,平面,ABCD,AD,,,BF,平面,ABCD,,,BF,平面,PAD,.,又,BF,平面,BEF,,,平面,BEF,平面,PAD,.,9,10,11,12,证实,30/60,10.(,山东,),由四棱柱,ABCD,A,1,B,1,C,1,D,1,截去三棱锥,C,1,B,1,CD,1,后得到几何体如图所表示,.,四边形,ABCD,为正方形,,O,为,AC,与,BD,交点,,E,为,AD,中点,,A,1,E,平面,ABCD,.,(1),证实:,A,1,O,平面,B,1,CD,1,;,证实,取,B,1,D,1,中点,O,1,,连接,CO,1,,,A,1,O,1,,,因为,ABCD,A,1,B,1,C,1,D,1,是四棱柱,,所以,A,1,O,1,OC,,,A,1,O,1,OC,,,所以四边形,A,1,OCO,1,为平行四边形,,所以,A,1,O,O,1,C,.,又,O,1,C,平面,B,1,CD,1,,,A,1,O,平面,B,1,CD,1,,,所以,A,1,O,平面,B,1,CD,1,.,9,10,11,12,证实,31/60,(2),设,M,是,OD,中点,证实:平面,A,1,EM,平面,B,1,CD,1,.,证实,因为,AC,BD,,,E,,,M,分别为,AD,和,OD,中点,,所以,EM,BD,,,又,A,1,E,平面,ABCD,,,BD,平面,ABCD,,,所以,A,1,E,BD,.,因为,B,1,D,1,BD,,所以,EM,B,1,D,1,,,A,1,E,B,1,D,1,.,又,A,1,E,,,EM,平面,A,1,EM,,,A,1,E,EM,E,,,所以,B,1,D,1,平面,A,1,EM,.,又,B,1,D,1,平面,B,1,CD,1,,,所以平面,A,1,EM,平面,B,1,CD,1,.,9,10,11,12,证实,32/60,9,10,11,12,11.(,汉中二模,),如图,在棱长均为,4,三棱柱,ABC,A,1,B,1,C,1,中,,D,,,D,1,分别是,BC,和,B,1,C,1,中点,.,(1),求证:,A,1,D,1,平面,AB,1,D,;,证实,33/60,证实,连接,DD,1,,在三棱柱,ABC,A,1,B,1,C,1,中,,D,,,D,1,分别是,BC,和,B,1,C,1,中点,,B,1,D,1,BD,,且,B,1,D,1,BD,,,四边形,B,1,BDD,1,为平行四边形,,BB,1,DD,1,,且,BB,1,DD,1,.,又,AA,1,BB,1,,,AA,1,BB,1,,,AA,1,DD,1,,,AA,1,DD,1,,,四边形,AA,1,D,1,D,为平行四边形,,A,1,D,1,AD,.,又,A,1,D,1,平面,AB,1,D,,,AD,平面,AB,1,D,,,A,1,D,1,平面,AB,1,D,.,9,10,11,12,34/60,(2),若平面,ABC,平面,BCC,1,B,1,,,B,1,BC,60,,求三棱锥,B,1,ABC,体积,.,解,在,ABC,中,边长均为,4,,则,AB,AC,,,D,为,BC,中点,,AD,BC,.,平面,ABC,平面,B,1,C,1,CB,,交线为,BC,,,AD,平面,ABC,,,AD,平面,B,1,C,1,CB,,即,AD,是三棱锥,A,B,1,BC,高,.,在,B,1,BC,中,,B,1,B,BC,4,,,B,1,BC,60,,,9,10,11,12,解答,35/60,12.,如图,在四棱锥,S,ABCD,中,平面,SAD,平面,ABCD,.,四边形,ABCD,为正方形,且,P,为,AD,中点,,Q,为,SB,中点,.,(1),求证:,CD,平面,SAD,;,9,10,11,12,证实,证实,四边形,ABCD,为正方形,,CD,AD,.,又,平面,SAD,平面,ABCD,,,且平面,SAD,平面,ABCD,AD,,,CD,平面,ABCD,,,CD,平面,SAD,.,36/60,(2),求证:,PQ,平面,SCD,;,证实,取,SC,中点,R,,连接,QR,,,DR,.,在,SBC,中,,Q,为,SB,中点,,R,为,SC,中点,,QR,PD,且,QR,PD,,,则四边形,PDRQ,为平行四边形,,PQ,DR,.,又,PQ,平面,SCD,,,DR,平面,SCD,,,PQ,平面,SCD,.,9,10,11,12,证实,37/60,(3),若,SA,SD,,,M,为,BC,中点,在棱,SC,上是否存在点,N,,使得平面,DMN,平面,ABCD,?并证实你结论,.,9,10,11,12,解答,38/60,解,存在点,N,为,SC,中点,使得平面,DMN,平面,ABCD,.,连接,PC,,,DM,交于点,O,,连接,PM,,,SP,,,NM,,,ND,,,NO,,,PD,CM,,且,PD,CM,,,四边形,PMCD,为平行四边形,,PO,CO,.,又,N,为,SC,中点,,NO,SP,.,易知,SP,AD,.,平面,SAD,平面,ABCD,,平面,SAD,平面,ABCD,AD,,且,SP,AD,,,SP,平面,ABCD,,,NO,平面,ABCD,.,又,NO,平面,DMN,,,平面,DMN,平面,ABCD,.,9,10,11,12,39/60,规范解答,模板答题规范练,例,(12,分,),如图,四棱锥,P,ABCD,底面为正方形,侧面,PAD,底面,ABCD,,,PA,AD,,点,E,,,F,,,H,分别为,AB,,,PC,,,BC,中点,.,(1),求证:,EF,平面,PAD,;,(2),求证:平面,PAH,平面,DEF,.,模,板体验,40/60,审题路线图,41/60,规范解答,评分标准,证实,(1),取,PD,中点,M,,连接,FM,,,AM,.,在,PCD,中,,F,,,M,分别为,PC,,,PD,中点,,AE,FM,且,AE,FM,,,则四边形,AEFM,为平行四边形,,AM,EF,.,4,分,又,EF,平面,PAD,,,AM,平面,PAD,,,EF,平面,PAD,.,6,分,42/60,(2),侧面,PAD,底面,ABCD,,,PA,AD,,,侧面,PAD,底面,ABCD,AD,,,PA,底面,ABCD,.,DE,底面,ABCD,,,DE,PA,.,E,,,H,分别为正方形,ABCD,边,AB,,,BC,中点,,Rt,ABH,Rt,DAE,,,则,BAH,ADE,,,BAH,AED,90,,,则,DE,AH,.,8,分,PA,平面,PAH,,,AH,平面,PAH,,,PA,AH,A,,,DE,平面,PAH,.,10,分,DE,平面,DEF,,,平面,PAH,平面,DEF,.,12,分,43/60,构建答题模板,第一步,找线线,:,经过三角形或四边形中位线,平行四边形、等腰三角形中线或线面、面面关系性质寻找线线平行或线线垂直,.,第二步,找线面,:,经过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系性质找线面垂直或平行,.,第三步,找面面,:,经过面面关系判定定理,寻找面面垂直或平行,.,第四步,写步骤,:,严格按照定理中条件规范书写解题步骤,.,44/60,1.,如图,在空间四面体,ABCD,中,若,E,,,F,,,G,,,H,分别是,AB,,,BD,,,CD,,,AC,中点,.,(1),求证:四边形,EFGH,是平行四边形;,规范演练,证实,在空间四面体,ABCD,中,,E,,,F,,,G,,,H,分别是,AB,,,BD,,,CD,,,AC,中点,,EF,綊,GH,,,四边形,EFGH,是平行四边形,.,1,2,3,4,5,证实,45/60,(2),求证:,BC,平面,EFGH,.,证实,E,,,H,分别是,AB,,,AC,中点,,EH,BC,.,EH,平面,EFGH,,,BC,平面,EFGH,,,BC,平面,EFGH,.,1,2,3,4,5,证实,46/60,2.(,北京,),如图,在三棱锥,P,ABC,中,,PA,AB,,,PA,BC,,,AB,BC,,,PA,AB,BC,2,,,D,为线段,AC,中点,,E,为线段,PC,上一点,.,(1),求证:,PA,BD,;,证实,因为,PA,AB,,,PA,BC,,,所以,PA,平面,ABC,.,又因为,BD,平面,ABC,,所以,PA,BD,.,1,2,3,4,5,证实,47/60,(2),求证:平面,BDE,平面,PAC,;,证实,因为,AB,BC,,,D,是,AC,中点,,所以,BD,AC,.,由,(1),知,,PA,BD,,,所以,BD,平面,PAC,.,所以平面,BDE,平面,PAC,.,1,2,3,4,5,证实,48/60,(3),当,PA,平面,BDE,时,求三棱锥,E,BCD,体积,.,解,因为,PA,平面,BDE,,平面,PAC,平面,BDE,DE,,,所以,PA,DE,.,因为,D,为,AC,中点,,1,2,3,4,5,解答,由,(1),知,,PA,平面,ABC,,所以,DE,平面,ABC,,,49/60,1,2,3,4,5,解答,3.(,北京海淀区模拟,),如图,四棱锥,P,ABCD,底面是边长为,1,正方形,侧棱,PA,底面,ABCD,,且,PA,2,,,E,是侧棱,PA,上动点,.,(1),求四棱锥,P,ABCD,体积;,解,PA,底面,ABCD,,,PA,为此四棱锥底面上高,.,50/60,1,2,3,4,5,(2),假如,E,是,PA,中点,求证:,PC,平面,BDE,;,证实,连接,AC,交,BD,于点,O,,连接,OE,.,四边形,ABCD,是正方形,,AO,OC,.,又,AE,EP,,,OE,PC,.,又,PC,平面,BDE,,,OE,平面,BDE,,,PC,平面,BDE,.,证实,51/60,(3),是否不论点,E,在侧棱,PA,任何位置,都有,BD,CE,?证实你结论,.,解,不论点,E,在侧棱,PA,任何位置,都有,BD,CE,.,证实:,四边形,ABCD,是正方形,,BD,AC,.,PA,底面,ABCD,,,BD,平面,ABCD,,,PA,BD,.,又,PA,AC,A,,,BD,平面,PAC,.,CE,平面,PAC,,,BD,CE,.,1,2,3,4,5,解答,52/60,4.,如图,已知正方形,ABCD,边长为,2,,,AC,与,BD,交于点,O,,将正方形,ABCD,沿对角线,BD,折起,得到三棱锥,A,BCD,.,(1),求证:平面,AOC,平面,BCD,;,1,2,3,4,5,证实,证实,四边形,ABCD,是正方形,,BD,AO,,,BD,CO,.,折起后仍有,BD,AO,,,BD,CO,,,AO,CO,O,,,BD,平面,AOC,.,BD,平面,BCD,,,平面,AOC,平面,BCD,.,53/60,1,2,3,4,5,解答,54/60,解,由,(1),知,BD,平面,AOC,,,又,AOC,是钝角,,AOC,120.,在,AOC,中,由余弦定理,得,AC,2,OA,2,OC,2,2,OA,OC,cos,AOC,1,2,3,4,5,55/60,5.(,四川,),如图,在四棱锥,P,ABCD,中,,PA,CD,,,AD,BC,,,ADC,PAB,90,,,BC,CD,AD,.,(1),在平面,PAD,内找一点,M,,使得直线,CM,平面,PAB,,并说明理由;,1,2,3,4,5,解答,56/60,解,取棱,AD,中点,M,(,M,平面,PAD,),,点,M,即为所求一个点,理由以下:,因为,AD,BC,,,BC,AD,,,所以,BC,AM,,且,BC,AM,.,所以四边形,AMCB,是平行四边形,,所以,CM,AB,.,又,AB,平面,PAB,,,CM,平面,PAB,,,所以,CM,平面,PAB,.,(,说明:取棱,PD,中点,N,,则所找点能够是直线,MN,上任意一点,),1,2,3,4,5,57/60,1,2,3,4,5,证实,(2),求证:平面,PAB,平面,PBD,.,58/60,证实,由已知,,PA,AB,,,PA,CD,.,所以,PA,平面,ABCD,.,所以,PA,BD,.,所以,BC,MD,,且,BC,MD,.,所以四边形,BCDM,是平行四边形,,又,AB,AP,A,,所以,BD,平面,PAB,.,又,BD,平面,PBD,,所以平面,PAB,平面,PBD,.,1,2,3,4,5,59/60,本课结束,60/60,
展开阅读全文