收藏 分销(赏)

第7章采样系统的分析.ppt

上传人:w****g 文档编号:12558504 上传时间:2025-10-30 格式:PPT 页数:58 大小:1.01MB 下载积分:14 金币
下载 相关 举报
第7章采样系统的分析.ppt_第1页
第1页 / 共58页
第7章采样系统的分析.ppt_第2页
第2页 / 共58页


点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第7章 采样系统的分析,本章主要内容与重点,离散采样系统的基本概念,信号的采样与保持,Z,变换理论(略),离散系统的数学模型,离散系统的稳定性与稳态误差,离散系统的动态性能分析,离散系统的校正,本章主要内容,本章在阐述了离散控制系统相关基本概念后,学习了采样过程及采样 第一张 上一张 下一张 最后一张 结束授课 重点 练习题定理、保持器的作用和数学模型、,z,变换的定义和求法、基本性质和,z,反变换的求法、线性差分方程的建立及其解法、脉冲传递函数的概念及求取方法、离散系统时域分析方法,简要介绍了频率法、根轨迹法在离散系统中的应用以及离散系统的校正方法。,本章重点,学习本章,需要掌握离散系统的相关基本概念,特别是采样过程和采样定理、,z,变换和,z,反变换及其性质、差分方程和脉冲传递函数等概念。在此基础上重点掌握利用脉冲传递函数求解离散系统的暂态响应,离散系统稳定性和稳态性能计算等内容。深入了解频率法、根轨迹法在离散系统分析中的应用,理解离散系统的串联校正和最少拍校正原理。,7-1 离散采样系统的基本概念,控制系统中有一个或若干个部件的输出信号是一串脉冲形式或是数字(数码),由于信号在时间上是离散的这类系统称为离散系统。,两类离散系统:,(1)采样控制系统或脉冲控制系统,离散信号是脉冲序列(时间上离散),(2)数字控制系统或计算机控制系统,离散信号是数字序列(时间上离散、幅值上整量化),放大器与执行电动机,炉,燃料供应调节阀,炉温,炉温设定值,D(z),G(s),D/A,放大与伺服电动机,A/D,温度检测与变换,计算机,温度设定值,炉温,炉温采样控制系统,炉温计算机(数字)控制系统,脉冲控制系统的特点,:,系统结构简单、投资少,适合于要求不高的场合。,数字控制系统的特点,:,控制器的控制规律由计算机实现,使得控制规律比较灵活、控制精度高,而且可以借助计算机实现许多附加功能,例如系统运行状态检测、报警、保护等。性价比超过模拟控制器。,在航空航天、军事、工业、公用事业系统中的各类控制系统已经广泛地运用计算机控制。,数字控制系统中的两个关键部件,:,A/D,转换器,:,把连续的模拟信号转换为时间上离散的、幅值上整量化的数字信号(二进制的整数),实际上具有对信号在时间点上,采样,,对信号幅值进行,编码,。(采样编码器),理想采样过程的数学描述:,采样信号的,Laplace,变换:,例1 设 ,求 的,L,变换,例2 设 为常数,求 的,L,变换,香农采样定理,:,如果采样器的 输入信号 具有有限带宽,具有最高频率为 的分量,只要采样周期满足以下条件:,信号 可以从采样信号 中恢复过来。,信号保持,:,D/A,转换器的输出信号是台阶型的,在其内部是“保持器”在起作用。,每个采样值能保持到下一个采样值到来之前,信号幅值没有变化。,零阶保持器:,当给零阶保持器输入一个理想单位脉冲 ,则脉冲响应(输出),脉冲过渡函数:,幅值为1,持续时间为,T,对应的,L,变换,零阶保持器的频率特性,零阶保持器的特性:,(1)低通特性,(2)相角迟后特性,(3)时间迟后特性 (平均迟后时间,T/2),一阶保持器,7-3,Z,变换(略),7-4 离散系统的数学模型,数学模型:差分方程、脉冲传递函数、离散状态空间表达式,脉冲传递函数:,在零初始条件下,G(s),实际开环离散系统的脉冲传递函数:,G(s),在输出端增设虚拟采样开关,脉冲传递函数,G(z),的求法,连续系统的传递函数,G(s),脉冲响应函数,g(t),按采样周期离散化,g,*,(t)Z,变换,G(z),对于虚拟采样开关的输出,相应的脉冲响应,对上式取,L,变换后:,令,记为:,例3 求以下差分方程所示系统的脉冲传递函数。,由实数位移定理:,例4,开环系统脉冲传递函数,采样,L,变换的两个重要性质:,(1)采样函数的,L,变换具有周期性,(2),具有串联环节的开环脉冲传递函数,串联形式(1),G,2,(s),G,1,(s),连续对象的输出:,其中:,对输出的离散化:,注意:一般,G,2,(s),G,1,(s),串联形式(2),带有零阶保持器的开环脉冲传递函数,G,p,(s),G,p,(s),离散化后:,例1:设对象传递函数,求带零阶保持器后系统的脉冲传递函数:,当 为 有理分式函数时,上式的,Z,变换 也必然是的有理分式函数。,闭环系统脉冲传递函数,连续输出信号的,L,变换,G(s),H(s),对应的,Z,变换为,闭环系统的输出对于输入的脉冲传递函数:,系统误差对于输入的脉冲传递函数:,闭环系统的特征方程:,开环脉冲传递函数:,应当注意:离散系统的闭环脉冲传递函数不能从对应的连续系统传递函数的,Z,变换直接得到。,闭环系统中,具有两个不同以上采样开关时的闭环脉冲传递函数:,G,2,(s),G,1,(s),H(s),对应的闭环系统脉冲传递函数,闭环系统中采样开关的位置,有可能不能获得闭环脉冲传递函数:,G(s),H(s),系统输出,G(s),H(s),表7-3 给出典型闭环离散系统及输出的,Z,变换函数,Z,变换的局限性:,(1),Z,变换的推导是建立在理想采样序列的基础上。而实际采样脉冲序列具有一定的宽度,只有当脉冲宽度与系统最大实践常数相比很小时,,Z,变换才能成立。,(2),C(z),只能反映,c(t),在采样时刻的数值,不能反映,c(t),在采样间隔中的信息。,(3)用,Z,变换方法分析离散系统,要求连续部分的传递函数的分母阶次比分子的阶次至少高2次,这时用,Z,变换方法得到的结果是正确的。,例如:设,R-C,电路如图,输入相当于是脉冲序列,设输入信号为单位阶跃函数,但实际上,电路的实际输出是 作用下的输出,,c(t),表现为充放电过程,如,p.345,图7-37所示。,采样周期,T=1,秒,对应的,Z,变换,7-5 离散系统的稳定性与稳态误差,离散系统的稳定性的分析方法:,将线性连续系统在,s,平面上分析稳定性的结果 离散线性系统在,z,平面上的稳定性。,1,.,s,域到,z,域的映射关系,相当于取,s,平面上的虚轴映射到,z,平面上的轨迹:以原点为圆心的单位圆,相位:相应的点沿单位圆变化无穷多圈,结论:在等 线的左半平面映射为,z,平面上同心圆的内部,右半平面映射为同心圆的外部。,s,平面的虚轴的左半平面,映射为,z,平面上单位圆的内部,右半平面映射为单位圆的外部。,离散系统稳定的充要条件,:,从离散系统的差分方程的齐次解的收敛性,或者从,z,域中离散系统的特征方程的根的研究得到结论。,离散系统的稳定性定义:,若离散系统在有界输入序列的作用下,其输出序列也是有界,则称该离散系统是稳定的。,线性定常连续系统稳定的充要条件,:,系统齐次方程的解是收敛的,或者系统特征方程根均具有负实部,或者系统传递函数的极点严格均在左半,s,平面。,(1)离散系统稳定的充要条件(时域),设:系统差分方程,系统齐次方程,设通解,:,系统特征方程,:,设特征方程具有各不相同的特征根:,通解,:,系统稳定的充分必要条件:,相应的线性定常离散系统是稳定的。,(2)离散系统稳定的充要条件(,z,域),G(s),H(s),对于典型的离散系统结构的闭环脉冲传递函数为,系统特征方程,设特征方程的根(闭环极点)各不相同,由,s,平面到,z,平面的映射关系,s,平面的左半平面,对应的稳定区域:,z,平面上单位圆的内部;,s,平面的右半平面,对应的不稳定区域:,z,平面上单位圆的外部;,s,平面的虚轴,对应的临界稳定:,z,平面上单位圆周,。,系统稳定的充分必要条件:,离散特征方程的全部特征根都在单位圆内,即,例:设典型离散系统,采样周期,T=1(s),,试分析系统的闭环稳定性。,解:开环脉冲传递函数,特征方程,结论:闭环系统不稳定,。,离散系统的稳定性判据,连续系统的代数稳定判据劳斯-胡尔维茨稳定判据,判定:,特征方程的根是否都在左半,s,平面,?,离散系统的稳定性:,特征方程的根是否都在,z,平面的单位圆内,?,将劳斯-胡尔维茨判据用于离散系统的稳定性判定,首先要将,z,平面上的稳定域单位圆内 新平面上的左半平面,Z,域,w,域,1.,W,变换(双线性变换)与劳斯稳定判据,令,注意到,z,和,w,都是复变量,则有,显然,:,考察上式:在,z,平面的单位圆上,满足,对应在,w,平面上:表明:,w,平面上的虚轴对应于,z,平面上的单位圆周。,Z,平面单位圆内,Z,平面单位圆外,w,平面左半平面,w,平面右半平面,劳斯稳定判据在离散系统中的应用:将离散系统在,z,域的特征方程变换为,w,域的特征方程,然后应用劳斯判据。,例1:设闭环离散系统如图所示,,T=0.1(s),,试求系统稳定时,K,的极限值。,进一步整理后,,w,域的特征方程:,劳斯表,由劳斯稳定判据,使系统闭环稳定的取值范围,极限增益,(2),Jury(,朱利)稳定判据,Jury,稳定判据是根据离散系统的,z,域特征方程 的系数,直接判别特征根是否严格位于,z,平面上的单位圆内。,设离散系统的 阶闭环特征方程,利用特征方程的系数,构造 、列,Jury,矩阵。,Jury,矩阵的第一行系数,:,Jury,矩阵的第一行系数,:,第三行系数,第四行系数,第五行系数,第六行系数,第七行系数,第八行系数,最后行系数,Jury,稳定判据,:特征方程 的根,全部严格位于,z,平面上单位圆内的充要条件是:,以及下列(,n-1),个约束成立,:,若上述条件满足,系统不稳定。,推论1,:,特征方程的根全部在单位圆内的一个充分条件是,推论2,:,具有系数的特征方程,其多项式为首一多项式,的根全部都在单,位圆内的充分条件是,例2 设一离散时间单位反馈系统,采样周期,T=1(s),,其开环脉冲传递函数,试用,Jury,稳定判据确定系统的,K,值范围。,解:闭环特征方程,对于二阶系统应用,Jury,稳定判据,只要用到下面3个约束条件:,综合(1)、(2)、(3),例3:,采样周期与开环增益对稳定性的影响,连续系统的稳定性取决于:开环增益、闭环极点、传输延迟等。,离散系统的稳定性:以上因素,再加上采样周期,T。,举例说明:设带有零阶保持器的离散系统如图所示,由,Jury,稳定判据 或,w,域的劳斯稳定判据,w,域的特征方程,P357,图7-49给出,K=1,不同采样时的单位阶跃响应。,结论:,(1)在保证系统稳定的前提下,采样周期越小,允许的开环增益范围就扩大,否则就缩小。,(2)当采样周期一定时,加大开环增益会使得系统的稳定性变差;,(3)当开环增益一定时,采样周期越长,丢失的信息就越多,对系统的稳定性和动态性能不利。,离散系统的稳态误差,求连续系统稳态误差的方法:(1),L,变换的终值定理;,(2)动态误差系数法,上述方法 求离散系统稳态误差,由于离散系统的结构没有规范的形式,误差脉冲传递函数也没有一般的计算公式。例如图示系统,设系统的全部极点(即误差脉冲传递函数的全部极点)均在,z,平面上的单位圆内。由,z,变换的终值定理求出系统在采样时刻的终值误差。,稳态误差:与系统自身的结构和参数、输入序列的形式、采样周期,T,有关。,例1:设图中,试求连续系统相应的稳态误差。,解,:,系统闭环稳定。,离散系统的型别与静态误差系数,离散系统的型别根据开环脉冲传递函数,G,(z),中,z=1,的极点个数来确定。,分别称为0型、1型、2型等等。,(1)单位阶跃输入时的稳态误差,0型系统,1型及以上的系统,(2)单位斜坡输入时的稳态误差,0型系统,2型及以上系统,1型系统,系统稳态误差为有限值。,系统稳态误差为零。,(3)单位加速度输入时的稳态误差,0型和1型系统,2型系统,系统稳态误差为有限值。,3型及以上系统,系统稳态误差为零。,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服