资源描述
2025年江西省吉安县第三中学、安福二中数学高三第一学期期末学业质量监测试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,若,则( )
A.4 B.-4 C.8 D.-8
2.在复平面内,复数对应的点的坐标为( )
A. B. C. D.
3.在中,角的对边分别为,,若,,且,则的面积为( )
A. B. C. D.
4.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是( )
A. B. C. D.
5.是平面上的一定点,是平面上不共线的三点,动点满足 ,,则动点的轨迹一定经过的( )
A.重心 B.垂心 C.外心 D.内心
6.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )
A.30° B.45° C.60° D.75°
7.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
8.某几何体的三视图如图所示,则该几何体的最长棱的长为( )
A. B. C. D.
9.设等比数列的前项和为,若,则的值为( )
A. B. C. D.
10.复数满足 (为虚数单位),则的值是( )
A. B. C. D.
11.计算等于( )
A. B. C. D.
12.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.记为数列的前项和.若,则______.
14. “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.
15.若,则______.
16.定义,已知,,若恰好有3个零点,则实数的取值范围是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:
①点的极角;
②面积的取值范围.
18.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为
(1)求椭圆的标准方程;
(2)若是以为直径的圆上的任意一点,求证:
19.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,
(1)证明:直线的斜率是-1;
(2)若,,成等比数列,求直线的方程.
20.(12分)如图,在直三棱柱中,分别是中点,且,.
求证:平面;
求点到平面的距离.
21.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.
(1)当时,求与的交点的极坐标;
(2)直线与曲线交于,两点,线段中点为,求的值.
22.(10分)在四棱柱中,底面为正方形,,平面.
(1)证明:平面;
(2)若,求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
根据交集的定义,,可知,代入计算即可求出.
【详解】
由,可知,
又因为,
所以时,,
解得.
故选:B.
本题考查交集的概念,属于基础题.
2.C
【解析】
利用复数的运算法则、几何意义即可得出.
【详解】
解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),
故选:C
本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
3.C
【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.
【详解】
解:,,且,
,化为:.
,解得.
.
故选:.
本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
4.D
【解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.
【详解】
易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即
在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.
故选D.
本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.
5.B
【解析】
解出,计算并化简可得出结论.
【详解】
λ(),
∴,
∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.
故选B.
本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.
6.C
【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.
【详解】
如图所示:作垂直于准线交准线于,则,
在中,,故,即.
故选:.
本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.
7.A
【解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
8.D
【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.
【详解】
根据三视图可知,几何体是一个四棱锥,如图所示:
由三视图知: ,
所以,
所以,
所以该几何体的最长棱的长为
故选:D
本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.
9.C
【解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.
【详解】
设等比数列的公比为,,,,
因此,.
故选:C.
本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.
10.C
【解析】
直接利用复数的除法的运算法则化简求解即可.
【详解】
由得:
本题正确选项:
本题考查复数的除法的运算法则的应用,考查计算能力.
11.A
【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.
【详解】
原式.
故选:A
本小题主要考查诱导公式,考查对数运算,属于基础题.
12.C
【解析】
作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.
【详解】
三棱锥的实物图如下图所示:
将其补成直四棱锥,底面,
可知四边形为矩形,且,.
矩形的外接圆直径,且.
所以,三棱锥外接球的直径为,
因此,该三棱锥的外接球的表面积为.
故选:C.
本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13.1
【解析】
由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.
【详解】
由,得,.
且,
则,即.
数列是以16为首项,以为公比的等比数列,
则.
故答案为:1.
本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.
14.
【解析】
先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.
【详解】
若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;
若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;
因此共有种.
故答案为:
本题考查排列组合实际问题,考查基本分析求解能力,属基础题.
15.
【解析】
直接利用关系式求出函数的被积函数的原函数,进一步求出的值.
【详解】
解:若,则,
即,所以.
故答案为:.
本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.
16.
【解析】
根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令 ,得或 ,再分当,两种情况讨论求解.
【详解】
由题意得:当时,在轴上方,且为增函数,无零点,
至多有两个零点,不合题意;
当时,令,得,令 ,得或 ,
如图所示:
当时,即时,要有3个零点,则,解得;
当时,即时,要有3个零点,则,
令,
,
所以在是减函数,又,
要使,则须,所以.
综上:实数的取值范围是.
故答案为:
本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②
【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.
(2)
①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.
②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.
解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.
【详解】
(1)因为曲线的参数方程为(为参数),
因为则曲线的参数方程
所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.
所以的极坐标方程为,即.
(2)①点的极角为,代入直线的极坐标方程得点
极径为,且,所以为等腰三角形,
又直线的普通方程为,
又点的极角为锐角,所以,所以,
所以点的极角为.
②解法1:直线的普通方程为.
曲线上的点到直线的距离
.
当,即()时,
取到最小值为.
当,即()时,
取到最大值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
解法2:直线的普通方程为.
因为圆的半径为2,且圆心到直线的距离,
因为,所以圆与直线相离.
所以圆上的点到直线的距离最大值为,
最小值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.
18.(1);(2)详见解析.
【解析】
(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;
(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果
【详解】
解:(1)由已知,得
由,两式相减,得
根据已知条件有,
当时,
∴,即
∴椭圆的标准方程为
(2)当直线斜率不存在时,,不等式成立.
当直线斜率存在时,设
由得
∴,
∴
由
化简,得
∴
令,则
当且仅当时取等号
∴
∵
∴
当且仅当时取等号
综上,
本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题
19.(1)见解析;(2)
【解析】
(1)设,,由已知,得,代入中即可;
(2)利用抛物线的定义将转化为,再利用韦达定理计算.
【详解】
(1)在抛物线上,∴,
设,,
由题可知,,∴,
∴,
∴,∴,
∴
(2)由(1)问可设::,
则, , ,
∴,∴,
即(*),
将直线与抛物线联立,可得:,
所以,
代入(*)式,可得满足,∴:.
本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.
20.(1)详见解析;(2).
【解析】
(1)利用线面垂直的判定定理和性质定理即可证明;
(2)取中点为,则,证得平面,利用等体积法求解即可.
【详解】
(1)因为,,
,是的中点,,
为直三棱柱,所以平面,
因为为中点,所以
平面,,又,
平面
(2),
又分别是中点,
.
由(1)知,,
又平面,
取中点为,连接如图,
则,平面,
设点到平面的距离为,
由,得,
即,解得,
点到平面的距离为.
本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.
21.(1),;(2)
【解析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;
(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.
【详解】
(1)依题意可知,直线的极坐标方程为(),
当时,联立解得交点,
当时,经检验满足两方程,(易漏解之处忽略的情况)
当时,无交点;
综上,曲线与直线的点极坐标为,,
(2)把直线的参数方程代入曲线,得,
可知,,
所以.
本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.
22.(1)详见解析;(2).
【解析】
(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;
(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.
【详解】
(1)连接,设,连接,
在四棱柱中,分别为的中点,,
四边形为平行四边形,,
平面,平面,平面.
(2)以为原点,所在直线分别为轴建立空间直角坐标系.
设,
四边形为正方形,,,
则,,,,
,,,
设为平面的法向量,为平面的法向量,
由得:,令,则,,
由得:,令,则,,
,,
,
二面角为锐二面角,
二面角的余弦值为.
本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.
展开阅读全文