资源描述
2026届河南省商丘市重点中学数学高三上期末教学质量检测模拟试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )
A. B. C. D.
2.已知三棱柱( )
A. B. C. D.
3.是恒成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )
A.深圳的变化幅度最小,北京的平均价格最高
B.天津的往返机票平均价格变化最大
C.上海和广州的往返机票平均价格基本相当
D.相比于上一年同期,其中四个城市的往返机票平均价格在增加
5.已知定义在上的函数满足,且当时,,则方程的最小实根的值为( )
A. B. C. D.
6.已知集合,,则( )
A. B.
C. D.
7.已知复数为纯虚数(为虚数单位),则实数( )
A.-1 B.1 C.0 D.2
8.已知为虚数单位,若复数满足,则( )
A. B. C. D.
9.若的展开式中的系数为-45,则实数的值为( )
A. B.2 C. D.
10.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.已知是定义在上的奇函数,且当时,.若,则的解集是( )
A. B.
C. D.
12.从抛物线上一点 (点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知实数满足,则的最小值是______________.
14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:
①当时,存在实数m,使函数恰有5个不同的零点;
②若,函数的零点不超过4个,则;
③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.
其中,正确命题的序号是_______.
15.在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C,使得△ABC的面积为5,则实数a的取值范围是____.
16. “直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数
(1)若对任意恒成立,求实数的取值范围;
(2)求证:
18.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.
(1)求椭圆的方程;
(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.
19.(12分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.
(1)证明:;
(2)若,求二面角的余弦值.
20.(12分)已知函数,.
(1)当时,求不等式的解集;
(2)若函数的图象与轴恰好围成一个直角三角形,求的值.
21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)设点,直线与曲线相交于,,求的值.
22.(10分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
根据程序框图知当时,循环终止,此时,即可得答案.
【详解】
,.运行第一次,,不成立,运行第二次,
,不成立,运行第三次,
,不成立,运行第四次,
,不成立,运行第五次,
,成立,
输出i的值为11,结束.
故选:B.
本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.
2.C
【解析】
因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=
3.A
【解析】
设 成立;反之,满足 ,但,故选A.
4.D
【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.
【详解】
对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.
对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.
对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.
对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.
故选:D
本小题主要考查根据条形图和折线图进行数据分析,属于基础题.
5.C
【解析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.
【详解】
当时,,所以,故当
时,,所以,而
,所以,又当时,
的极大值为1,所以当时,的极大值为,设方程
的最小实根为,,则,即,此时
令,得,所以最小实根为411.
故选:C.
本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.
6.A
【解析】
根据对数性质可知,再根据集合的交集运算即可求解.
【详解】
∵,
集合,
∴由交集运算可得.
故选:A.
本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.
7.B
【解析】
化简得到,根据纯虚数概念计算得到答案.
【详解】
为纯虚数,故且,即.
故选:.
本题考查了根据复数类型求参数,意在考查学生的计算能力.
8.A
【解析】
分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.
详解:由题设有,故,故选A.
点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.
9.D
【解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.
【详解】
∵
所以展开式中的系数为,
∴解得.
故选:D.
本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.
10.D
【解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【详解】
,,对应点为,在第四象限.
故选:D.
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
11.B
【解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.
【详解】
为定义在上的奇函数,.
当时,,,
为奇函数,,
由得:或;
综上所述:若,则的解集为.
故选:.
本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.
12.A
【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.
【详解】
设点的坐标为,
由题意知,焦点,准线方程,
所以,解得,
把点代入抛物线方程可得,
,因为,所以,
所以点坐标为,
代入斜率公式可得,.
故选:A
本题考查抛物线的性质,考查运算求解能力;属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
先画出不等式组对应的可行域,再利用数形结合分析解答得解.
【详解】
画出不等式组表示的可行域如图阴影区域所示.
由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,
平移直线,
易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.
故答案为:-8
本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.
14.①②③
【解析】
根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.
【详解】
解:当时又因为为偶函数
可画出的图象,如下所示:
可知当时有5个不同的零点;故①正确;
若,函数的零点不超过4个,
即,与的交点不超过4个,
时恒成立
又当时,
在上恒成立
在上恒成立
由于偶函数的图象,如下所示:
直线与图象的公共点不超过个,则,故②正确;
对,偶函数的图象,如下所示:
,使得直线与恰有4个不同的交点点,且相邻点之间的距离相等,故③正确.
故答案为:①②③
本题考查函数方程思想,数形结合思想,属于难题.
15.(,)
【解析】
求出AB的长度,直线方程,结合△ABC的面积为5,转化为圆心到直线的距离进行求解即可.
【详解】
解:AB的斜率k,|AB|
5,
设△ABC的高为h,
则∵△ABC的面积为5,
∴S|AB|hh=5,
即h=2,
直线AB的方程为y﹣ax,即4x﹣3y+3a=0
若圆x2+y2=9上有且仅有四个不同的点C,
则圆心O到直线4x﹣3y+3a=0的距离d,
则应该满足d<R﹣h=3﹣2=1,
即1,
得|3a|<5
得a,
故答案为:(,)
本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键.
16.必要不充分
【解析】
先求解直线l1与直线l2平行的等价条件,然后进行判断.
【详解】
“直线l1:与直线l2:平行”等价于a=±2,
故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.
故答案为:必要不充分.
本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2)见解析.
【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;
(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.
【详解】
(1)对任意恒成立等价于对任意恒成立,
令,,则,
当时,,单调递增;
当时,,单调递减;
有最大值,
.
(2)证明:由(1)知,当时,即,
,,
令,则,
令,则,
在上是增函数,又,
当时,;当时,,
在上是减函数,在上是增函数,
,即,
.
本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.
18.(1)(2)存在;详见解析
【解析】
(1)由椭圆的性质得,解得后可得,从而得椭圆方程;
(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入=0由恒成立问题可求得.验证斜率不存在时也适合即得.
【详解】
解:(1)由题易知解得,
所以椭圆方程为
(2)设
当直线斜率存在时,设为与椭圆方程联立得
,显然
所以
因为
化简
解得即
所以此时存在定点满足题意
当直线斜率不存在时,显然也满足
综上所述,存在定点,使成立
本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法.
19.(1)见解析;(2)
【解析】
(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;
(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦.
【详解】
(1)易知与平面垂直,∴,
连接,取中点,连接,
由得,,
∴平面,平面,∴,
又,∴平面,∴;
(2)由,知是中点,
令,则,
由,,
∴,解得,故.
以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,
则,
,,设平面的法向量为,
则,取,则.
又易知平面的一个法向量为,
.
∴二面角的余弦值为.
本题考查证明线线垂直,考查用空间向量法求二面角.证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化.求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角.
20.(1) (2)
【解析】
(1)当时,,
由可得,(
所以,解得,
所以不等式的解集为.
(2)由题可得,
因为函数的图象与轴恰好围成一个直角三角形,
所以,解得,
当时,,函数的图象与轴没有交点,不符合题意;
当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.
综上,可得.
21.(Ⅰ),;(Ⅱ).
【解析】
(Ⅰ)由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;
(Ⅱ)把代入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.
【详解】
解:(Ⅰ )由(为参数),消去参数,可得.
∵,∴,即.
∴曲线的直角坐标方程为;
(Ⅱ )把代入,得.
设,两点对应的参数分别为,
则,.
不妨设,,
∴.
本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题.
22.(1);(2)当BP为cm时,α+β取得最小值.
【解析】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.
(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.
【详解】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,
则,
化简得,解之得,或(舍),
(2)设BP=t,则,
,
设,,
令f'(t)=0,因为,得,
当时,f'(t)<0,f(t)是减函数;
当时,f'(t)>0,f(t)是增函数,
所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,
因为恒成立,所以f(t)<0,
所以tan(α+β)<0,,
因为y=tanx在上是增函数,所以当时,α+β取得最小值.
本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.
展开阅读全文