资源描述
2026届伊春市重点中学高三数学第一学期期末质量跟踪监视试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则 的最小值为( )
A. B. C.l D.1
2.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )
A.1 B.2 C.3 D.4
3.设,则( )
A. B. C. D.
4.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )
A. B. C. D.
5.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为( )
A. B. C.4 D.2
6.为得到的图象,只需要将的图象( )
A.向左平移个单位 B.向左平移个单位
C.向右平移个单位 D.向右平移个单位
7.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则( )
A.1 B. C.2 D.3
8.设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为( )
A. B. C. D.
9.若复数,其中为虚数单位,则下列结论正确的是( )
A.的虚部为 B. C.的共轭复数为 D.为纯虚数
10.已知复数,则的虚部为( )
A. B. C. D.1
11.若与互为共轭复数,则( )
A.0 B.3 C.-1 D.4
12.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,若,则a的取值范围是______.
14.如图,在梯形中,∥,分别是的中点,若,则的值为___________.
15.在边长为的菱形中,点在菱形所在的平面内.若,则_____.
16.若为假,则实数的取值范围为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,函数,其中,是的一个极值点,且.
(1)讨论的单调性
(2)求实数和a的值
(3)证明
18.(12分)如图,在正三棱柱中,,,分别为,的中点.
(1)求证:平面;
(2)求平面与平面所成二面角锐角的余弦值.
19.(12分)如图,在三棱柱中,,,,为的中点,且.
(1)求证:平面;
(2)求锐二面角的余弦值.
20.(12分)若不等式在时恒成立,则的取值范围是__________.
21.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.
22.(10分)已知函数.
(Ⅰ)若是第二象限角,且,求的值;
(Ⅱ)求函数的定义域和值域.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.
【详解】
解:设点,则点,,
,
,
当时,取最小值,最小值为.
故选:A.
本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.
2.C
【解析】
试题分析:根据题意,当时,令,得;当时,令,得
,故输入的实数值的个数为1.
考点:程序框图.
3.C
【解析】
试题分析:,.故C正确.
考点:复合函数求值.
4.D
【解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.
【详解】
由题意,直线的斜率为,
可得直线的方程为,
把直线的方程代入双曲线,可得,
设,则,
由的中点为,可得,解答,
又由,即,解得,
所以双曲线的标准方程为.
故选:D.
本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.
5.D
【解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.
【详解】
解:设,,,
∵,
∴,即,①
又,②,
由①②可得,
∵,
∴,
∴,
∴,
即,
故选:D.
本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.
6.D
【解析】
试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D.
考点:三角函数的图像变换.
7.C
【解析】
连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.
【详解】
连接AO,由O为BC中点可得,
,
、、三点共线,
,
.
故选:C.
本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.
8.B
【解析】
设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦距为2,即可求出结论.
【详解】
设双曲线的渐近线方程为,
代入抛物线方程得,
依题意,
,
椭圆的焦距,
,
双曲线的标准方程为.
故选:B.
本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.
9.D
【解析】
将复数整理为的形式,分别判断四个选项即可得到结果.
【详解】
的虚部为,错误;,错误;,错误;
,为纯虚数,正确
本题正确选项:
本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.
10.C
【解析】
先将,化简转化为,再得到下结论.
【详解】
已知复数,
所以,
所以的虚部为-1.
故选:C
本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.
11.C
【解析】
计算,由共轭复数的概念解得即可.
【详解】
,又由共轭复数概念得:,
.
故选:C
本题主要考查了复数的运算,共轭复数的概念.
12.B
【解析】
试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.
考点:抛物线的性质.
【名师点晴】
在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即可得到所求范围.
【详解】
,等价为,
且时,递增,时,递增,
且,在处函数连续,
可得在R上递增,
即为,可得,解得,
即a的取值范围是.
故答案为:.
本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题.
14.
【解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.
【详解】
以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则
,
所以,,由,
得,即,又,所以
,故,,
所以.
故答案为:2
本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.
15.
【解析】
以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.
【详解】
解:连接设交于点以点为原点,
分别以直线为轴,建立如图所示的平面直角坐标系,
则:
设
得,
解得,
,
或,
显然得出的是定值,
取
则,
.
故答案为:.
本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.
16.
【解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.
【详解】
因为为假,则其否定为真,
即为真,所以对任意实数恒成立,所以.
又,当且仅当,即时,等号成立,所以.
故答案为:.
本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)在区间单调递增;(2);(3)证明见解析.
【解析】
(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单调递增,可证明,取,可得,而,利用裂项相消法,结合放缩法可得结果.
【详解】
(1)由已知可得函数的定义域为,且,
令,则有,由,可得,
可知当x变化时,的变化情况如下表:
1
-
0
+
极小值
,即,可得在区间单调递增;
(2)由已知可得函数的定义域为,且,
由已知得,即,①
由可得,,②
联立①②,消去a,可得,③
令,则,
由(1)知,,故,在区间单调递增,
注意到,所以方程③有唯一解,代入①,可得,
;
(3)证明:由(1)知在区间单调递增,
故当时,,,
可得在区间单调递增,
因此,当时,,即,亦即,
这时,故可得,取,
可得,而,
故
.
本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.
18.(1)证明见详解;(2).
【解析】
(1)取中点为,通过证明//,进而证明线面平行;
(2)取中点为,以为坐标原点建立直角坐标系,求得两个平面的法向量,用向量法解得二面角的大小.
【详解】
(1)证明:取的中点,连结,,如下图所示:
在中,因为 为的中点,
,且,
又为的中点,,
,且,
,且,
四边形为平行四边形,
又平面,平面,
平面,即证.
(2)取中点,连结,,则,平面,
以为原点,分别以,,为,,轴,
建立空间直角坐标系,如下图所示:
则,,,,,
,,,
设平面的一个法向量,
则,则,
令.则,
同理得平面的一个法向量为,
则,
故平面与平面所成二面角(锐角)的余弦值为.
本题考查由线线平行推证线面平行,以及利用向量法求解二面角的大小,属综合中档题.
19.(1)证明见解析;(2).
【解析】
(1)证明后可得平面,从而得,结合已知得线面垂直;
(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.
【详解】
(1)证明:因为,为中点,
所以,又,,
所以平面,又平面,
所以,又,,
所以平面.
(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则
,,,,,.
设平面的法向量,则
,即,令,则;
设平面的法向量,则
,即,令,则,
所以.
故锐二面角的余弦值为.
本题考查证明线面垂直,解题时注意 线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.
20.
【解析】
原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.
【详解】
因为在时恒成立,故在恒成立.
令,由可得.
令,,则为上的增函数,故.
故.
故答案为:.
本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.
21.
【解析】
根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.
【详解】
,,即.
,解得,.
设为曲线任一点,则,
又设在矩阵A变换作用得到点,
则,即,所以即
代入,得,
所以曲线的方程为.
本题考查逆矩阵,矩阵与变换等,是基础题.
22.(Ⅰ)(Ⅱ)函数的定义域为,值域为
【解析】
(1)由为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.
(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值域.
【详解】
解:(1)因为是第二象限角,且,
所以.
所以,
所以.
(2)函数的定义域为.
化简,得
,
因为,且,,
所以,
所以.
所以函数的值域为.
(注:或许有人会认为“因为,所以”,其实不然,因为.)
本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.
展开阅读全文