资源描述
2025年山东省临沂市第十九中学数学高三第一学期期末监测试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数,若函数有三个零点,则( )
A.12 B.11 C.6 D.3
2.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有( )
A.①② B.①④ C.②③ D.①②④
3.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( )
A. B. C. D.
4.已知集合,则为( )
A.[0,2) B.(2,3] C.[2,3] D.(0,2]
5.设,则"是""的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
6.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是( )
A. B. C. D.
7.已知命题,且是的必要不充分条件,则实数的取值范围为( )
A. B. C. D.
8.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )
A. B. C. D.
9.若向量,,则与共线的向量可以是( )
A. B. C. D.
10.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )
A., B.,
C., D.,
11.已知复数满足,(为虚数单位),则( )
A. B. C. D.3
12.设,满足约束条件,则的最大值是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线的一条渐近线方程为,则________.
14.根据如图的算法,输出的结果是_________.
15.已知三棱锥的四个顶点都在球O的球面上,,,,,E,F分别为,的中点,,则球O的体积为______.
16.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面四边形中,已知,.
(1)若,求的面积;
(2)若求的长.
18.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
19.(12分)已知函数,.
(1)证明:函数的极小值点为1;
(2)若函数在有两个零点,证明:.
20.(12分)已知函数.
当时,求不等式的解集;
,,求a的取值范围.
21.(12分)已知函数.
(1)求不等式的解集;
(2)若对任意恒成立,求的取值范围.
22.(10分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.
(1)证明://平面BCE.
(2)设平面ABF与平面CDF所成的二面角为θ,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.
【详解】
作出函数的图象如图所示,
令,
由图可得关于的方程的解有两个或三个(时有三个,时有两个),
所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),
由,可得的值分别为,
则
故选B.
本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.
2.D
【解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.
【详解】
解:由已知可得:圆:的圆心为(0,0),半径为2,
则圆心到直线的距离为:,
∴,
而,与的面积相等,
∴或,
即到直线的距离或时满足条件,
根据点到直线距离可知,①②④满足条件.
故选:D.
本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.
3.D
【解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.
【详解】
由题,窗花的面积为,其中小正方形的面积为,
所以所求概率,
故选:D
本题考查几何概型的面积公式的应用,属于基础题.
4.B
【解析】
先求出,得到,再结合集合交集的运算,即可求解.
【详解】
由题意,集合,
所以,则,
所以.
故选:B.
本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.
5.A
【解析】
根据题意得到充分性,验证得出不必要,得到答案.
【详解】
,当时,,充分性;
当,取,验证成立,故不必要.
故选:.
本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.
6.B
【解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.
【详解】
,
设,
要使在区间上不是单调函数,
即在上有变号零点,令,
则,
令,则问题即在上有零点,由于在上递增,所以的取值范围是.
故选:B
本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.
7.D
【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.
【详解】
解:命题,即: ,
是的必要不充分条件,
,
,解得.实数的取值范围为.
故选:.
本题考查根据充分、必要条件求参数范围,其思路方法:
(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.
(2)求解参数的取值范围时, 一定要注意区间端点值的检验.
8.C
【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.
【详解】
设,则,记,
,易知是增函数,且的值域是,
∴的唯一解,且时,,时,,即,
由题意,而,,
∴,解得,.
∴.
故选:C.
本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.
9.B
【解析】
先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.
【详解】
故选B
本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.
10.C
【解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.
【详解】
表示取出的为一个白球,所以.表示取出一个黑球,,所以.
表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.
故选:C
本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.
11.A
【解析】
,故,故选A.
12.D
【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.
【详解】
作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.
由得:,
故选:D
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
根据双曲线的标准方程写出双曲线的渐近线方程,结合题意可求得正实数的值.
【详解】
双曲线的渐近线方程为,
由于该双曲线的一条渐近线方程为,,解得.
故答案为:.
本题考查利用双曲线的渐近线方程求参数,考查计算能力,属于基础题.
14.55
【解析】
根据该For语句的功能,可得,可得结果
【详解】
根据该For语句的功能,可得
则
故答案为:55
本题考查For语句的功能,属基础题.
15.
【解析】
可证,则为的外心,又则平面
即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.
【详解】
解:,,
,因为为的中点,所以为的外心,
因为,所以点在内的投影为的外心,
所以平面,
平面
,
所以,
所以,
又球心在上,设,则,所以,所以球O体积,.
故答案为:
本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题.
16.①③④
【解析】
先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.
【详解】
∵,∴曲线在点处的切线方程为,
则.
∵,∴,
则是首项为1,公比为的等比数列,
从而,,.
故所有正确结论的编号是①③④.
故答案为:①③④
本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2).
【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.
(2)利用诱导公式求得,进而求得,利用两角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的长.
【详解】
(1)在中,
,
解得,
.
(2)
在中,,
.
.
本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.
18.(1); (2)证明见解析,.
【解析】
(1)根据离心率和的面积是得到方程组,计算得到答案.
(2)先排除斜率为0时的情况,设,,联立方程组利用韦达定理得到,,根据化简得到,代入直线方程得到答案.
【详解】
(1)由题意可得,解得,,则椭圆的标准方程是.
(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.
设,,直线的方程为
联立,整理得
则,.
因为直线与直线的斜率之和为1,所以,
所以,
将,代入上式,整理得.
所以,即,
则直线的方程为.
故直线恒过定点.
本题考查了椭圆的标准方程,直线过定点问题,计算出是解题的关键,意在考查学生的计算能力和转化能力.
19.(1)见解析(2)见解析
【解析】
(1)利用导函数的正负确定函数的增减.(2) 函数在有两个零点,即方程在区间有两解, 令通过二次求导确定函数单调性证明参数范围.
【详解】
解:(1)证明:因为,
当时,,,
所以在区间递减;
当时,,
所以,所以在区间递增;
且,所以函数的极小值点为1
(2)函数在有两个零点,
即方程在区间有两解,
令,则
令,则,
所以在单调递增,
又,
故存在唯一的,使得, 即,
所以在单调递减,在区间单调递增,
且, 又因为,所以,
方程关于的方程在有两个零点,
由的图象可知,,
即.
本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.
20.(1); (2).
【解析】
(1)当时,,
①当时,,
令,即,解得,
②当时,,显然成立,所以,
③当时,,
令,即,解得,
综上所述,不等式的解集为.
(2)因为,
因为,有成立,
所以只需,
解得,
所以a的取值范围为.
绝对值不等式的解法:
法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;
法二:利用“零点分段法”求解,体现了分类讨论的思想;
法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
21. (1);(2).
【解析】
(1)通过讨论的范围,分为,,三种情形,分别求出不等式的解集即可;
(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.
【详解】
(1)当时,原不等式等价于,解得,所以,
当时,原不等式等价于,解得,所以此时不等式无解,
当时,原不等式等价于,解得,所以
综上所述,不等式解集为.
(2)由,得,
当时,恒成立,所以;
当时,.
因为
当且仅当即或时,等号成立,
所以;
综上的取值范围是.
本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.
22.(1)证明见解析(2)
【解析】
(1)根据线面垂直的性质定理,可得DE//BF,然后根据勾股定理计算可得BF=DE,最后利用线面平行的判定定理,可得结果.
(2)利用建系的方法,可得平面ABF的一个法向量为,平面CDF的法向量为,然后利用向量的夹角公式以及平方关系,可得结果.
【详解】
(1)因为DE⊥平面ABCD,所以DEAD,
因为AD=4,AE=5,DE=3,同理BF=3,
又DE⊥平面ABCD,BF⊥平面ABCD,
所以DE//BF,又BF=DE,
所以平行四边形BEDF,故DF//BE,
因为BE平面BCE,DF平面BCE
所以DF//平面BCE;
(2)建立如图空间直角坐标系,
则D(0,0,0),A(4,0,0),
C(0,4,0),F(4,3,﹣3),
,
设平面CDF的法向量为,
由,令x=3,得,
易知平面ABF的一个法向量为,
所以,
故.
本题考查线面平行的判定以及利用建系方法解决面面角问题,属基础题.
展开阅读全文