资源描述
2025年呼和浩特市第二中学数学高三第一学期期末预测试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数若函数在上零点最多,则实数的取值范围是( )
A. B. C. D.
2.设,若函数在区间上有三个零点,则实数的取值范围是( )
A. B. C. D.
3.若表示不超过的最大整数(如,,),已知,,,则( )
A.2 B.5 C.7 D.8
4.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )
A. B. C. D.
5.已知满足,则的取值范围为( )
A. B. C. D.
6.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是( )
A. B. C. D.
7.在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )
A. B. C.1 D.
8.已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )
A. B.
C. D.
9.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是( )
A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//n
C.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β
10.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )
A. B. C. D.
11.在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.给出个数 ,,,,,,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( )
A.; B.;
C.; D.;
二、填空题:本题共4小题,每小题5分,共20分。
13.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.
14.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________.
15.已知函数,且,,使得,则实数m的取值范围是______.
16.在中,角,,的对边分别为,,,若,且,则面积的最大值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,函数.
(1)若,求的单调递增区间;
(2)若,求的值.
18.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.
(1)求证:;
(2)若平面平面,求二面角的余弦值.
19.(12分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)
(1)求证:平面;
(2)在图2中,若,求直线与平面所成角的正弦值.
20.(12分)已知函数,.
(1)求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)判断函数的零点个数.
21.(12分)若不等式在时恒成立,则的取值范围是__________.
22.(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.
(1)求椭圆的标准方程;
(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.
【详解】
由图知与有个公共点即可,
即,当设切点,
则,
.
故选:D.
本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.
2.D
【解析】
令,可得.
在坐标系内画出函数的图象(如图所示).
当时,.由得.
设过原点的直线与函数的图象切于点,
则有,解得.
所以当直线与函数的图象切时.
又当直线经过点时,有,解得.
结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.
即函数在区间上有三个零点时,实数的取值范围是.选D.
点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.
3.B
【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.
【详解】
解:.,
∴,,
,
同理可得:;;.;,,…….
∴.
故是一个以周期为6的周期数列,
则.
故选:B.
本题考查周期数列的判断和取整函数的应用.
4.A
【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.
【详解】
解:由抛物线,可得,则,故其准线方程为,
抛物线的准线过双曲线的左焦点,
.
抛物线的准线被双曲线截得的线段长为,
,又,
,
则双曲线的离心率为.
故选:.
本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长.
5.C
【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.
【详解】
解:设,则的几何意义为点到点的斜率,
作出不等式组对应的平面区域如图:
由图可知当过点的直线平行于轴时,此时成立;
取所有负值都成立;
当过点时,取正值中的最小值,,此时;
故的取值范围为;
故选:C.
本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.
6.B
【解析】
利用抛物线的定义可得,,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.
【详解】
设抛物线的焦点为F,设点,
由抛物线的定义可知,
线段AB中点的横坐标为3,又,,可得,
所以抛物线方程为.
故选:B.
本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.
7.B
【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;
【详解】
解:因为,
所以
因为
所以
,即,,
时
故选:
本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.
8.B
【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.
【详解】
由题,
即
由累加法可得:
即
对于任意的,不等式恒成立
即
令
可得且
即
可得或
故选B
本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.
9.B
【解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.
【详解】
A.若,则在中存在一条直线,使得,则,又,那么,故正确;
B.若,则或相交或异面,故不正确;
C.若,则存在,使,又,则,故正确.
D.若,且,则或,又由,故正确.
故选:B
本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.
10.D
【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.
【详解】
3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.
故选:D.
本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.
11.D
【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.
【详解】
,对应的点位于第四象限.
故选:.
本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.
12.A
【解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.
【详解】
因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.
本题考查了补充循环结构,正确读懂题意是解本题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13.;
【解析】
求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.
【详解】
由,得,,
,,
∵,
∴ ,解得.
故答案为:.
本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.
14.
【解析】
先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解.
【详解】
由是单位向量.若,,
设,
则,,
又,
则,
则,
则,
又,
所以,(当或时取等)
即的取值范围是,,
故答案为:,.
本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平.
15.
【解析】
根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.
【详解】
解:依题意,,
即函数在上的值域是函数在上的值域的子集.
因为在上的值域为()或(),
在上的值域为,
故或,
解得
故答案为:.
本题考查了分段函数的值域求参数的取值范围,属于中档题.
16.
【解析】
利用正弦定理将角化边得到,再由余弦定理得到,根据同角三角函数的基本关系表示出,最后利用面积公式得到,由基本不等式求出的取值范围,即可得到面积的最值;
【详解】
解:∵在中,,∴,
∴,
∴,
∴.
∵,即,当且仅当时等号成立,
∴,∴面积的最大值为.
故答案为:
本题考查正弦定理、余弦定理解三角形,三角形面积公式的应用,以及基本不等式的应用,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2).
【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;
(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.
【详解】
(1)当时,
,
由,得,
因此,函数的单调递增区间为;
(2),,
,,,,
.
本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.
18.(1)证明见解析(2)
【解析】
(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.
(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.
【详解】
(1)证明:取中点为,连接,,,如下图所示:
因为,,,
所以,故为等边三角形,则.
连接,因为,,
所以为等边三角形,则.
又,所以平面.
因为平面,
所以.
(2)由(1)知,
因为平面平面,平面,
所以平面,
以为原点,,,为,,轴建立如图所示的空间直角坐标系,
易求,则,,,,
则,,.
设平面的法向量,
则即令,则,,
故.
设平面的法向量,
则则
令,则,,故,
所以.
由图可知,二面角为钝二面角角,
所以二面角的余弦值为.
本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.
19.(1)见解析;(2).
【解析】
(1)先连接,根据线面平行的判定定理,即可证明结论成立;
(2)在图2中,过点作,垂足为,连接,,证明平面平面,得到点在底面上的投影必落在直线上,记为点在底面上的投影,连接,,得出即是直线与平面所成角,再由题中数据求解,即可得出结果.
【详解】
(1)连接,因为等腰梯形中(如图1),,,
所以与平行且相等,即四边形为平行四边形;所以;
又为线段的中点,为中点,易得:四边形也为平行四边形,所以;
将四边形沿折起后,平行关系没有变化,仍有:,且,
所以翻折后四边形也为平行四边形;故;
因为平面,平面,
所以平面;
(2)在图2中,过点作,垂足为,连接,,
因为,,翻折前梯形的高为,
所以,则,;
所以;
又,,
所以,即,所以;
又,且平面,平面,
所以平面;因此,平面平面;
所以点在底面上的投影必落在直线上;
记为点在底面上的投影,连接,,
则平面;
所以即是直线与平面所成角,
因为,所以,
因此,,
故;
因为,
所以,
因此,故,
所以.
即直线与平面所成角的正弦值为.
本题主要考查证明线面平行,以及求直线与平面所成的角,熟记线面平行的判定定理,以及线面角的求法即可,属于常考题型.
20.(1)(2)答案见解析(3)答案见解析
【解析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;
(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;
(3)分与两类讨论,即可判断函数的零点个数.
【详解】
(1),
,
设曲线在点,处的切线的斜率为,
则,
又,
曲线在点,处的切线方程为:,即;
(2)由(1)知,,
故当时,,所以在上单调递增;
当时,,;,,;
的递减区间为,递增区间为,;
当时,同理可得的递增区间为,递减区间为,;
综上所述,时,单调递增为,无递减区间;
当时,的递减区间为,递增区间为,;
当时,的递增区间为,递减区间为,;
(3)当时,恒成立,所以无零点;
当时,由,得:,只有一个零点.
本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.
21.
【解析】
原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.
【详解】
因为在时恒成立,故在恒成立.
令,由可得.
令,,则为上的增函数,故.
故.
故答案为:.
本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.
22.(1);(2)见解析
【解析】
(1)由条件可得,再根据离心率可求得,则可得椭圆方程;
(2)当与轴垂直时,设直线的方程为:,与椭圆联立求得的坐标,通过、斜率之积为列方程可得的值,进而可得的面积;当与轴不垂直时,设,,的方程为,与椭圆方程联立,利用韦达定理和、斜率之积为可得,再利用弦长公式求出,以及到的距离,通过三角形的面积公式求解.
【详解】
(1)抛物线的焦点为,
,
,,
,,
椭圆方程为;
(2)(ⅰ)当与轴垂直时,设直线的方程为:
代入得:,,
,
解得:,
;
(ⅱ)当与轴不垂直时,设,,的方程为
由,
由①
,
,
,
即
整理得:
代入①得:
到的距离
综上:为定值.
本题考查椭圆方程的求解,考查直线和椭圆的位置关系,考查韦达定理的应用,考查了学生的计算能力,是中档题.
展开阅读全文