资源描述
2025-2026学年云南省屏边县民族中学数学高三上期末考试试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )
A.400米 B.480米
C.520米 D.600米
2.在中,角、、所对的边分别为、、,若,则( )
A. B. C. D.
3.已知函数,当时,恒成立,则的取值范围为( )
A. B. C. D.
4.已知,满足,且的最大值是最小值的4倍,则的值是( )
A.4 B. C. D.
5.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )
A. B. C. D.1
6.函数的对称轴不可能为( )
A. B. C. D.
7.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是( )
A. B.
C. D.
8.若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )
A. B. C. D.
9.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为( )
A. B. C. D.
10.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为
A.或11 B.或11 C. D.
11.已知函数,下列结论不正确的是( )
A.的图像关于点中心对称 B.既是奇函数,又是周期函数
C.的图像关于直线对称 D.的最大值是
12.已知集合,则( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,则关于的不等式的解集为_______.
14.已知函数,则曲线在点处的切线方程为___________.
15.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.
16.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;
记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).
记数表中位于第i行第j列的元素为,其中(,,).如:,.
(1)设,,请计算,,;
(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;
(3)设,,对于整数t,t不属于数表M,求t的最大值.
18.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,
19.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
20.(12分)已知集合,集合.
(1)求集合;
(2)若,求实数的取值范围.
21.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.
(1)为上一点,且,当平面时,求实数的值;
(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.
22.(10分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.
(1)求椭圆的方程;
(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.
【详解】
设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:
由题意可得,解得;
且满足,
故解得塔高米,即塔高约为480米.
故选:B
本题考查了对中国文化的理解与简单应用,属于基础题.
2.D
【解析】
利用余弦定理角化边整理可得结果.
【详解】
由余弦定理得:,
整理可得:,.
故选:.
本题考查余弦定理边角互化的应用,属于基础题.
3.A
【解析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.
【详解】
由题意,若,显然不是恒大于零,故.
,则在上恒成立;
当时,等价于,
因为,所以.
设,由,显然在上单调递增,
因为,所以等价于,即,则.
设,则.
令,解得,易得在上单调递增,在上单调递减,
从而,故.
故选:A.
本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.
4.D
【解析】
试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.
考点:线性规划.
5.B
【解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.
【详解】
过点E作,垂足为H,过H作,垂足为F,连接EF.
因为平面平面ABCD,所以平面ABCD,
所以.
因为底面ABCD是边长为1的正方形,,所以.
因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.
易证平面平面ABE,
所以点H到平面ABE的距离,即为H到EF的距离.
不妨设,则,.
因为,所以,
所以,当时,等号成立.
此时EH与ED重合,所以,.
故选:B.
本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.
6.D
【解析】
由条件利用余弦函数的图象的对称性,得出结论.
【详解】
对于函数,令,解得,
当时,函数的对称轴为,,.
故选:D.
本题主要考查余弦函数的图象的对称性,属于基础题.
7.D
【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.
【详解】
的定义域为,,
当时,,故在单调递减;
不妨设,而,知在单调递减,
从而对任意、,恒有,
即,
,,
令,则,原不等式等价于在单调递减,即,
从而,因为,
所以实数a的取值范围是
故选:D.
此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.
8.B
【解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.
【详解】
由题可知.
所以
令,
得
令,得
故选:B
本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.
9.D
【解析】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.
【详解】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,则,,
在等腰中,取的中点为,连接,
则,,
所以,
即:,
所以异面直线,所成角的余弦值为.
故选:D.
本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.
10.A
【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.
11.D
【解析】
通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.
【详解】
解:,正确;
,为奇函数,周期函数,正确;
,正确;
D: ,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;
且,,,故D错误.
故选:.
本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.
12.B
【解析】
先由得或,再计算即可.
【详解】
由得或,
,,
又,.
故选:B
本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.
【详解】
令,易知函数为奇函数,在R上单调递增,
,
即,
∴
∴,即x>
故答案为:
本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.
14.
【解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.
【详解】
因为,
所以,
又
故切线方程为,
整理为,
故答案为:
本题主要考查了导数的几何意义,切线方程,属于容易题.
15.360
【解析】
先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.
【详解】
第一块小矩形的面积,第二块小矩形的面积,
故;
而,
故.
故答案为:360.
本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.
16.4038.
【解析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.
【详解】
由知:
得函数的图象关于点对称
又函数的图象关于点对称
则函数图象与函数图象的交点关于点对称
则
故,
即
本题正确结果:
本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)详见解析(3)29
【解析】
(1)将,代入,可求出,,可代入求,,可求结果.
(2)可求,,通过反证法证明,
(3)可推出,,的最大值,就是集合中元素的最大值,求出.
【详解】
(1)由题意知等差数列的通项公式为:;
等差数列的通项公式为:,
得,
则,,
得,
故.
(2)证明:已知.,由题意知等差数列的通项公式为:;
等差数列的通项公式为:,
得,,.
得,,,.
所以若,则存在,,使,
若,则存在,,,使,
因此,对于正整数,考虑集合,,,
即,,,,,,.
下面证明:集合中至少有一元素是7的倍数.
反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,
又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,
不妨设为,,其中,,.则这两个元素的差为7的倍数,即,
所以,与矛盾,所以假设不成立,即原命题成立.
即集合中至少有一元素是7的倍数,不妨设该元素为,,,
则存在,使,,,即,,,
由已证可知,若,则存在,,使,而,所以为负整数,
设,则,且,,,,
所以,当,时,对于整数,若,则成立.
(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.
则对于整数,存在,,,,,使成立,
整理,得,
又因为,,
所以且是7的倍数,
因为,,所以,所以矛盾,即假设不成立.
所以对于整数,若,则,
又由第二问,对于整数,则,
所以的最大值,就是集合中元素的最大值,
又因为,,,,
所以.
本题考查数列的综合应用,以及反证法,求最值,属于难题.
18.(1)列联表见解析,有把握;(2)分布列见解析,.
【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.
【详解】
解:(1)由题意得下表:
男
女
合计
冰雪迷
40
20
60
非冰雪迷
20
20
40
合计
60
40
100
的观测值为
所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.
(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,
所以的可能取值为0,1,2.
且,,,
所以的分布列为
0
1
2
本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.
19.(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.
【解析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.
(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.
【详解】
解:(1)设椭圆的焦半距为c,则由题设,得,解得,
所以,故所求椭圆C的方程为
(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:
设点,,将直线的方程代入,
并整理,得.(*)
则,
因为以线段为直径的圆恰好经过坐标原点O,所以,即.
又,于是,
解得,
经检验知:此时(*)式的,符合题意.
所以当时,以线段为直径的圆恰好经过坐标原点O
本题考查椭圆方程的求法,椭圆的简单性质,直线与椭圆位置关系的综合应用,考查计算能力以及转化思想的应用,属于中档题.
20.(1);(2).
【解析】
(1)求出函数的定义域,即可求出结论;
(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.
【详解】
(1)由,即得或,
所以集合或.
(2)集合,
由得或,解得或,
所以实数的取值范围为.
本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.
21.(1);(2).
【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;
(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.
【详解】
(1)连接交于点,连接,
平面,平面,平面平面,,
在梯形中,,则,,
,,所以,;
(2)取中点,连接、,过点作,则,作于,连接.
为的中点,且,,且,
所以,四边形为平行四边形,由于,,
,,,,,
为的中点,所以,,,同理,
,,,平面,
,,,为面与面所成的锐二面角,
,
,,,则,
,,
平面,平面,,
,,面,
为与底面所成的角,
,,.
在中,.
因此,与平面所成角的正弦值为.
本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.
22.(1)
(2)是为定值,的横坐标为定值
【解析】
(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.
(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.
【详解】
(1)依题意可知,解得,即;而,即,结合解得,,因此椭圆方程为
(2)由题意得,左焦点,设直线的方程为:,,.
由消去并整理得,∴,.
直线的方程为:,直线的方程为:.
联系方程,解得,又因为.
所以.所以的横坐标为定值.
本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.
展开阅读全文