资源描述
2025-2026学年江苏省南通市如皋市数学高三第一学期期末监测模拟试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )
A.60 B.192 C.240 D.432
2.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A. B. C. D.
3.若复数满足,则( )
A. B. C. D.
4.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )
A. B. C. D.
5.已知实数,则的大小关系是( )
A. B. C. D.
6.在各项均为正数的等比数列中,若,则( )
A. B.6 C.4 D.5
7.已知i是虚数单位,则( )
A. B. C. D.
8.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则( )
A. B.
C. D.
9.已知过点且与曲线相切的直线的条数有( ).
A.0 B.1 C.2 D.3
10.函数,,则“的图象关于轴对称”是“是奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
11.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为
A. B. C. D.
12.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.
14.已知,满足约束条件,则的最小值为__________.
15.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.
16.已知,,,,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)设点,直线与曲线相交于,,求的值.
18.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.
(1)用表示线段并确定的范围;
(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.
19.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.
(1)求证:平面;
(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.
20.(12分)已知函数.
(1)求不等式的解集;
(2)若不等式对恒成立,求实数的取值范围.
21.(12分)已知函数的图象在处的切线方程是.
(1)求的值;
(2)若函数,讨论的单调性与极值;
(3)证明:.
22.(10分)如图,四边形是边长为3的菱形,平面.
(1)求证:平面;
(2)若与平面所成角为,求二面角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.
【详解】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.
故选:C.
本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.
2.A
【解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.
【详解】
设事件A:检测5个人确定为“感染高危户”,
事件B:检测6个人确定为“感染高危户”,
∴,.
即
设,则
∴
当且仅当即时取等号,即.
故选:A.
本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.
3.C
【解析】
化简得到,,再计算复数模得到答案.
【详解】
,故,
故,.
故选:.
本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.
4.A
【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.
【详解】
由于复数对应复平面上的点,,则,
,,因此,.
故选:A.
本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.
5.B
【解析】
根据,利用指数函数对数函数的单调性即可得出.
【详解】
解:∵,
∴,,.
∴.
故选:B.
本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.
6.D
【解析】
由对数运算法则和等比数列的性质计算.
【详解】
由题意
.
故选:D.
本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.
7.D
【解析】
利用复数的运算法则即可化简得出结果
【详解】
故选
本题考查了复数代数形式的乘除运算,属于基础题。
8.D
【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.
【详解】
是偶函数,,
而,因为在上递减,
,
即.
故选:D
本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.
9.C
【解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.
【详解】
若直线与曲线切于点,则,
又∵,∴,∴,解得,,
∴过点与曲线相切的直线方程为或,
故选C.
本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.
10.B
【解析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.
【详解】
设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.
所以,“是奇函数”“的图象关于轴对称”;
若函数是上的偶函数,则,所以,函数的图象关于轴对称.
所以,“的图象关于轴对称”“是奇函数”.
因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.
故选:B.
本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.
11.B
【解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.
12.B
【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.
【详解】
设点、,并设直线的方程为,
将直线的方程与抛物线方程联立,消去得,
由韦达定理得,,
,,,,,
,可得,,
抛物线的准线与轴交于,
的面积为,解得,则抛物线的方程为,
所以,.
故选:B.
本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.
【详解】
解:设正四棱柱的底面边长,高,
则,
即
故答案为:
本题考查柱体、锥体的体积计算,属于基础题.
14.
【解析】
作出约束条件所表示的可行域,利用直线截距的几何意义,即可得答案.
【详解】
画出可行域易知在点处取最小值为.
故答案为:
本题考查简单线性规划的最值,考查数形结合思想,考查运算求解能力,属于基础题.
15.2
【解析】
根据比赛场次,分析,画出图象,计算结果.
【详解】
画图所示,可知目前(五)班已经赛了2场.
故答案为:2
本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.
16.
【解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.
【详解】
,,,,
,,
,
,
.
故答案为:
本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ),;(Ⅱ).
【解析】
(Ⅰ)由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;
(Ⅱ)把代入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.
【详解】
解:(Ⅰ )由(为参数),消去参数,可得.
∵,∴,即.
∴曲线的直角坐标方程为;
(Ⅱ )把代入,得.
设,两点对应的参数分别为,
则,.
不妨设,,
∴.
本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题.
18.(1),;(2)米.
【解析】
(1) 过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.
(2)根据(1)有,再设,求导分析函数的单调性与最值即可.
【详解】
解:
过点作于点
则,
在中,,
,
由正弦定理得:,
,
,
,
,因为,
化简得
,
令,,且,
因为,故
令
即,
记,
当时,单调递增;
当时,单调递减,
又,
当时,取最大值,
此时,
的最大值为米.
本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.
19.(1)证明见解析;(2).
【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;
(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,设,0,,由二面角的余弦值为求解,再由空间向量求解直线与平面所成角的正弦值.
【详解】
(1)证明:因为四边形是等腰梯形,,,所以.又,所以,
因此,,
又,
且,,平面,
所以平面.
(2)取的中点,连接,,
由于,因此,
又平面,平面,所以.
由于,,平面,
所以平面,故,
所以为二面角的平面角.在等腰三角形中,由于,
因此,又,
因为,所以,所以
以为轴、为轴、为轴建立空间直角坐标系,则,,
,,
设平面的法向量为
所以,即,令,则,,
则平面的法向量,,
设直线与平面所成角为,则
本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.
20.(1)(2)
【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;
(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.
【详解】
解:(1)或或
解得或或无解
综上不等式的解集为.
(2)时,,即
所以只需在时恒成立即可
令,
由解析式得在上是增函数,
∴当时,
即
本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.
21.(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.
【解析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;
(2)先对求导数,根据导数判断和求解即可.
(3)把证明转化为证明,然后证明极小值大于极大值即可.
【详解】
解:(1)函数的定义域为
由已知得,则,解得.
(2)由题意得,则.
当时,,所以单调递减,
当时,,所以单调递增,
所以,单调递减区间为,单调递增区间为,
的极小值为,无极大值.
(3)要证成立,
只需证成立.
令,则,
当时,单调递增,
当时,单调递减,
所以的极大值为,即
由(2)知,时,,且的最小值点与的最大值点不同,所以,即.
所以,.
知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.
22.(1)证明见解析(2)
【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;
(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.
【详解】
证明:(1)因为平面,平面,所以.
因为四边形是菱形,所以.
又因为,平面,平面,
所以平面.
解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,
因为与平面所成角为,即,所以
又,所以,
所以
所以
设平面的一个法向量,则令,则.
因为平面,所以为平面的一个法向量,且
所以,
.
所以二面角的正弦值为.
本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算.
展开阅读全文