资源描述
2025-2026学年福建省罗源第二中学、连江二中数学高三第一学期期末达标测试试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设a,b都是不等于1的正数,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
2.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )
A.8 B. C. D.
3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )
A. B. C. D.
4.已知集合,集合,则( )
A. B. C. D.
5.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )
A.8 B.9 C.10 D.11
6.若,满足约束条件,则的最大值是( )
A. B. C.13 D.
7.设为虚数单位,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.已知函数满足,且,则不等式的解集为( )
A. B. C. D.
9.已知,且,则在方向上的投影为( )
A. B. C. D.
10.已知向量,,且与的夹角为,则x=( )
A.-2 B.2 C.1 D.-1
11.若,则“”是“的展开式中项的系数为90”的( )
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
12.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布,则,
.)
A.4.56% B.13.59% C.27.18% D.31.74%
二、填空题:本题共4小题,每小题5分,共20分。
13.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.
14.的展开式中,的系数是__________. (用数字填写答案)
15.设等比数列的前项和为,若,,则__________.
16.已知,,且,则的最小值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点
(1)求椭圆的方程;
(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.
18.(12分)已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.
19.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,
(1)求的值;
(2)求边的长.
20.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组
频数(单位:名)
使用“余额宝”
使用“财富通”
使用“京东小金库”
30
使用其他理财产品
50
合计
1200
已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.
(1)求频数分布表中,的值;
(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
21.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.
(Ⅰ)若θ=,求的值;
(Ⅱ)若BC=4,AB=2,求边AC的长.
22.(10分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.
Ⅰ求证:平面PBD;
Ⅱ求证:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.
【详解】
由“”,得,
得或或,
即或或,
由,得,
故“”是“”的必要不充分条件,
故选C.
本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.
2.D
【解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.
【详解】
由三视图知几何体是四棱锥,如图,
且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,
所以,
故选:
本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.
3.B
【解析】
因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.
【详解】
因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.
故选:B
本题主要考查正负角的定义以及弧度制,属于基础题.
4.D
【解析】
可求出集合,,然后进行并集的运算即可.
【详解】
解:,;
.
故选.
考查描述法、区间的定义,对数函数的单调性,以及并集的运算.
5.B
【解析】
根据题意计算,,,解不等式得到答案.
【详解】
∵是以1为首项,2为公差的等差数列,∴.
∵是以1为首项,2为公比的等比数列,∴.
∴
.
∵,∴,解得.则当时,的最大值是9.
故选:.
本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.
6.C
【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.
【详解】
解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即
点到坐标原点的距离最大,即.
故选:.
本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.
7.A
【解析】
利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.
【详解】
,对应的点的坐标为,位于第一象限.
故选:A.
本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.
8.B
【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.
【详解】
设,则函数的导数,,,即函数为减函数,,,则不等式等价为,
则不等式的解集为,即的解为,,由得或,解得或,
故不等式的解集为.故选:.
本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.
9.C
【解析】
由向量垂直的向量表示求出,再由投影的定义计算.
【详解】
由
可得,因为,所以.故在方向上的投影为.
故选:C.
本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.
10.B
【解析】
由题意,代入解方程即可得解.
【详解】
由题意,
所以,且,解得.
故选:B.
本题考查了利用向量的数量积求向量的夹角,属于基础题.
11.B
【解析】
求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.
【详解】
若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.
故选:B.
本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.
12.B
【解析】
试题分析:由题意
故选B.
考点:正态分布
二、填空题:本题共4小题,每小题5分,共20分。
13.60
【解析】
试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.
考点:排列组合.
14.
【解析】
根据组合的知识,结合组合数的公式,可得结果.
【详解】
由题可知:项来源可以是:(1)取1个,4个
(2)取2个,3个
的系数为:
故答案为:
本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.
15.
【解析】
由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解.
【详解】
由题意,设等比数列的公比为,
因为,即,解得,,
所以.
本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题.
16.8
【解析】
由整体代入法利用基本不等式即可求得最小值.
【详解】
,
当且仅当时等号成立.
故的最小值为8,
故答案为:8.
本题考查基本不等式求和的最小值,整体代入法,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)或
【解析】
(1)由已知条件得到方程组,解得即可;
(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;
【详解】
解:(1)由已知椭圆右焦点坐标为,离心率为,,,
所以椭圆的标准方程为;
(2)由题意得直线的斜率存在,设直线方程为
联立,消元整理得,,
由,解得
设弦中点坐标为,
所以在轴上方,只需位于内(含边界)就可以,
即满足,即,
解得或
本题考查了椭圆的定义标准方程及其性质,直线与椭圆的综合应用,考查了推理能力与计算能力,属于中档题.
18.(1)(2)证明见解析
【解析】
(1)由点可得,由,根据即可求解;
(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.
【详解】
解:(1)由题意可知,,
又,得,
所以椭圆的方程为
(2)证明:设直线的方程为,
联立,可得,
设,
则有,
因为,
所以,
又因为点B与点Q关于原点对称,所以,即,
则有,由点在椭圆上,得,所以,
所以,即,
所以存在实数,使成立
本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.
19.(1) (2)
【解析】
(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.
【详解】
(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以
.
(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
20.(1);(2)680元.
【解析】
(1)根据题意,列方程,然后求解即可
(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和
10000元使用“财富通”的利息为(元),
得到所有可能的取值为560(元),700(元),840(元),
然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可
【详解】
(1)据题意,得,
所以.
(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.
10000元使用“余额宝”的利息为(元).
10000元使用“财富通”的利息为(元).
所有可能的取值为560(元),700(元),840(元).
,,.
的分布列为
560
700
840
所以(元).
本题考查频数分布表以及分布列和数学期望问题,属于基础题
21.(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.
(Ⅱ)根据,可得,然后使用余弦定理,可得结果.
【详解】
(Ⅰ),所以
所以;
(Ⅱ),
所以,
所以,,
所以,
所以边.
本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.
22.(1)见解析;(2)见解析.
【解析】
分析:(1)先证明,再证明FG//平面PBD. (2)先证明平面,再证明BD⊥FG.
详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,
,
又平面,平面,所以平面
(II)因为菱形ABCD,所以,
又PA⊥面ABCD,平面,所以,
因为平面,平面,且,
平面,
平面,∴BD⊥FG .
点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.
展开阅读全文