资源描述
2025-2026学年安徽省黄山市黟县中学数学高三上期末学业水平测试模拟试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )
A.1月至8月空气合格天数超过天的月份有个
B.第二季度与第一季度相比,空气达标天数的比重下降了
C.8月是空气质量最好的一个月
D.6月份的空气质量最差.
2.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是( )
A. B. C. D.
3.已知(i为虚数单位,),则ab等于( )
A.2 B.-2 C. D.
4.已知集合,,则为( )
A. B. C. D.
5.已知复数,,则( )
A. B. C. D.
6.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )
A. B. C. D.
7.已知定义在上的函数,,,,则,,的大小关系为( )
A. B. C. D.
8.函数的一个单调递增区间是( )
A. B. C. D.
9.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是( )
A. B.9 C.7 D.
10.函数的图象可能是下列哪一个?( )
A. B.
C. D.
11.设函数的定义域为,命题:,的否定是( )
A., B.,
C., D.,
12.下列函数中,在定义域上单调递增,且值域为的是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知三棱锥中,,,,且二面角的大小为,则三棱锥外接球的表面积为__________.
14.某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为______.
15.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.
16.已知,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,(其中)
.
(1)求;
(2)求证:当时,.
18.(12分)已知函数,.
(1)当时,讨论函数的零点个数;
(2)若在上单调递增,且求c的最大值.
19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.
(1)求A;
(2)已知a=2,B=,求△ABC的面积.
20.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.
(1)设抛掷4次的得分为,求变量的分布列和数学期望.
(2)当游戏得分为时,游戏停止,记得分的概率和为.
①求;
②当时,记,证明:数列为常数列,数列为等比数列.
21.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.
22.(10分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.
(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?
(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.
2.B
【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.
【详解】
令,则当时,,
又,所以为偶函数,
从而等价于,
因此选B.
本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.
3.A
【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.
【详解】
,
,得,.
.
故选:.
本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.
4.C
【解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.
【详解】
因为集合,,
所以
故选:C
本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.
5.B
【解析】
分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得
详解: ,故选B
点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.
6.C
【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.
【详解】
由几何体的三视图可得,
几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,
故此几何体的体积为圆柱的体积减去三棱柱的体积,
即,
故选C.
本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.
7.D
【解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.
【详解】
当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.
本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.
8.D
【解析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.
【详解】
因为
,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.
故选:D
本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.
9.B
【解析】
试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B.
考点:圆与圆的位置关系及其判定.
【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值.
10.A
【解析】
由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.
【详解】
由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.
本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.
11.D
【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.
【详解】
因为:,是全称命题,
所以其否定是特称命题,即,.
故选:D
本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.
12.B
【解析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.
【详解】
对于,图象如下图所示:
则函数在定义域上不单调,错误;
对于,的图象如下图所示:
则在定义域上单调递增,且值域为,正确;
对于,的图象如下图所示:
则函数单调递增,但值域为,错误;
对于,的图象如下图所示:
则函数在定义域上不单调,错误.
故选:.
本题考查函数单调性和值域的判断问题,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB
的垂线,则垂线的交点为球心O,将的长度求出或用球半径表示,再利用余弦定理即可建立方程解得半径.
【详解】
设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB
的垂线,则垂线的交点为球心O,如图所示
因为,,所以,,,
又二面角的大小为,则,,所以
,
设外接球半径为R,则,,
在中,由余弦定理,得,
即,解得,
故三棱锥外接球的表面积.
故答案为:.
本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.
14.
【解析】
先根据茎叶图求出平均数和中位数,然后可得结果.
【详解】
剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平均数与中位数的差为.
本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.
15.
【解析】
先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.
【详解】
取的外心为,设为球心,连接,则平面,取的中点,连接,,过做于点,易知四边形为矩形,连接,,设,.连接,则,,三点共线,易知,所以,.在和中,,,即,,所以,,得.所以.
本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.
16.
【解析】
首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.
【详解】
因为,所以,即,
所以,
故答案是.
该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)见解析
【解析】
(1)取,则;取,则,
∴;
(2)要证,只需证,
当时,;
假设当时,结论成立,即,
两边同乘以3 得:
而
∴,即时结论也成立,
∴当时,成立.
综上原不等式获证.
18.(1)见解析(2)2
【解析】
(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;
(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.
【详解】
(1)当时,,定义域为,
由可得,
令,则,
由,得;由,得,
所以在上单调递增,在上单调递减,
则的最大值为,
且当时,;当时,,
由此作出函数的大致图象,如图所示.
由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;
当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;
当即时,直线与函数的象没有交点,即函数无零点.
(2)因为在上单调递增,即在上恒成立,
设,则,
①若,则,则在上单调递减,显然,
在上不恒成立;
②若,则,在上单调递减,当时,,故,单调递减,不符合题意;
③若,当时,,单调递减,
当时,,单调递增,
所以,
由,得,
设,则,
当时,,单调递减;
当时,,单调递增,
所以,所以,
又,所以,即c的最大值为2.
本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.
19.(1) ; (2).
【解析】
(1)由正弦定理化简已知等式可得sinBcosA﹣sinAsinB=1,结合sinB>1,可求tanA=,结合范围A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根据三角形的面积公式即可计算得解.
【详解】
(1)∵bcosA﹣asinB=1.
∴由正弦定理可得:sinBcosA﹣sinAsinB=1,
∵sinB>1,
∴cosA=sinA,
∴tanA=,
∵A∈(1,π),
∴A=;
(2)∵a=2,B=,A=,
∴C=,根据正弦定理得到
∴b=6,
∴S△ABC=ab==6.
本题主要考查了正弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
20.(1)分布列见解析,数学期望为6;(2)①;②证明见解析
【解析】
(1)变量的所有可能取值为4,5,6,7,8,分别求出对应的概率,进而可求出变量的分布列和数学期望;
(2)①得2分只需要抛掷一次正面向上或两次反面向上,分别求出两种情况的概率,进而可求得;②得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,可知当且时,,结合,可推出,从而可证明数列为常数列;结合,可推出,进而可证明数列为等比数列.
【详解】
(1)变量的所有可能取值为4,5,6,7,8.
每次抛掷一次硬币,正面向上的概率为,反面向上的概率也为,
则,
.
所以变量的分布列为:
4
5
6
7
8
故变量的数学期望为.
(2)①得2分只需要抛掷一次正面向上或两次反面向上,概率的和为.
②得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,
故且时,有,
则时,,
所以,
故数列为常数列;
又,
,所以数列为等比数列.
本题考查离散型随机变量的分布列及数学期望,考查常数列及等比数列的证明,考查学生的计算求解能力与推理论证能力,属于中档题.
21.(1),;(2)见解析
【解析】
(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解
【详解】
(1)将的参数方程(为参数)消去参数,得.
因为,,
所以曲线的直角坐标方程为.
(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,
则圆心到直线的距离,
所以与圆相离,且.
连接,在中,,
所以,,即的最小值为.
本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题
22.(1)79颗;(2)5.5秒.
【解析】
(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;
(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.
【详解】
(1)第一到第六组的频率依次为
0.1,0.2,0.3,0.2,,0.05,其和为1
所以,,
所以,自转周期在2至10秒的大约有(颗).
(2)新发现的脉冲星自转周期平均值为
(秒).
故新发现的脉冲星自转周期平均值为5.5秒.
本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.
展开阅读全文