资源描述
普通高中数学必修3(A版)学案 2.1. 随机抽样
2.1.2系统抽样
执笔:闫福保 赵文生 授课时间: 年 月 日
【学习目标】
(1)正确理解系统抽样的概念,掌握系统抽样的一般步骤;
(2)通过对解决实际问题的过程的研究学会抽取样本的系统抽样方法,体会系统抽样与简单随机抽样的关系。
【重点难点】
正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
【学习过程】
一、 学习引导
情境1:某校高一年级共有20个班级,每班有50名学生。为了了解高一学生的视力状况,从这1000名学生中抽取一个容量为100的样本进行检查,应该怎样抽取?
情境2:用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法?
二、 合作交流
1.系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
说明:由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;
(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的。
2.系统抽样的一般步骤:
(1)采用随机的方式将总体中的个体编号(编号方式可酌情考虑,为方便起见,有时可直接利用个体所带有的号码,如学生的准考证号、街道门牌号等);
(2)为将整个的编号分段(即分成几个部分),要确定分段的间隔,当(为总体个
数,为样本容量)是整数时,,当不是整数时,通过从总体中删除一些个体(用
简单随机抽样的方法)使剩下的总体中个体的个数能被整除,这时;
(3)在第1段用简单随机抽样确定起始的个体编号;
(4)按照事先确定的规则抽取样本(通常是将加上间隔,得到第2个编号,再将加上,得到第3个编号,这样继续下去,直到获取整个样本).
三、 随堂练习
1. 你能举几个系统抽样的例子吗?
2. 下列抽样中不是系统抽样的是 ( )
()从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
()工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
()搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
()电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
3.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
解:第一步:将624名职工用随机方式进行编号;
第二步:从总体中用随机数表法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,,619),并分成62段;
第三步:在第一段000,001,002,009这十个编号中用简单随机抽样确定起始号码;
第四步:将编号为的个体抽出,组成样本。
4. 从编号为的枚最新研制的某种型号的导弹中随机抽取枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取枚导弹的编号可能是()
四、 能力提升
1.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
解:第一步:将624名职工用随机方式进行编号;
第二步:从总体中用随机数表法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,,619),并分成62段;
第三步:在第一段000,001,002,009这十个编号中用简单随机抽样确定起始号码;
第四步:将编号为的个体抽出,组成样本。
2.从编号为的枚最新研制的某种型号的导弹中随机抽取枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取枚导弹的编号可能是()
【小结反思】
系统抽样有那些优点和缺点. (优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷. 缺点:当对总体情况不是很了解的情况下,样本的代表性较差. )
注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下.
【自我测评】
1.在一次有奖明信片的100000个有机会中奖的号码(编号00000~99999)中,邮政部门按照随机抽取的方式确定后两位为37的为中奖号码,这是运用____________的抽样方法来确定中奖号码。依次写出这1000个中奖号码中的前5个和最后5个依次是 _
_________________ ____________。
2.系统抽样又称为等距抽样,若从N个个体中抽取n个个体为样本,先要确定抽样间隔,即抽样距k,其中k= ;从第一段1,2,3,…,k个号码中随机抽取一个入样号码i0,则i0+k,i0+2k,…,i0+(n-1)k均为入样号码;这些号码对应的个体构成 ;每个个体的入样可能性为 。
3.N个编号中抽n个号码作样本,考虑用系统抽样方法,抽样间距为 ( )
A. B.n C. D.+1
4.从个体数为103的总体中采用系统抽样,抽取一个容量为10的样本。说明具体的操作方法。
5.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况.请你设计一个调查方案
【解答】
1.系统抽样,00037,001037,00237,00337,00437,99537,99637,99737,99837,99937。 2.,样本, 3.C 4.同例2
5.解:(1)分段:362/40商是9余数为2,抽样距为9;(2)先用简单抽样从这些书中抽取2册书不检验;(3)将剩下的书编号:0,1,…,359;(4)从第一组(编号为0,1,…,8)书中按照简单随机抽样的方法抽取一册书,比如其编号为k;(5)顺序地抽取编号为下面数字的书:k+9n(1≤n≤39),总共得到40个样本。
3
展开阅读全文