收藏 分销(赏)

2017年高考真题分类汇编.docx

上传人:仙人****88 文档编号:12018698 上传时间:2025-08-28 格式:DOCX 页数:4 大小:81.89KB 下载积分:10 金币
下载 相关 举报
2017年高考真题分类汇编.docx_第1页
第1页 / 共4页
2017年高考真题分类汇编.docx_第2页
第2页 / 共4页


点击查看更多>>
资源描述
2017年高考真题分类汇编(理数) 一、单选题(共7题;共14分) 1、(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(    ) A、+1 B、+3 C、+1 D、+3 2、(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB, = =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则(    ) A、γ<α<β B、α<γ<β C、α<β<γ D、β<γ<α 3、 (2017•北京卷)某四棱锥的三视图如图所示,则该四棱锥的 最长棱的长度为(  ) A、3 B、2 C、2 D、2 4、 (2017•新课标Ⅰ卷)某多面体的三视图如图所示,其中正视 图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(  ) A、10 B、12 C、14 D、16 5、 (2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中, ∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1 所成角的余弦值为(    ) A、 B、 C、 D、 6、(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(    ) A、90π B、63π C、42π D、36π 7、(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(    ) A、π B、 C、 D、 8、(2017•山东)由一个长方体和两个  圆柱体构成的几何体的三视图如图,则该几何体的体积为________. 9、(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 10、(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1 , 球O的体积为V2 , 则 的值是________. 11、(2017•新课标Ⅰ卷)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________. 12、(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论: ①当直线AB与a成60°角时,AB与b成30°角; ②当直线AB与a成60°角时,AB与b成60°角; ③直线AB与a所成角的最小值为45°; ④直线AB与a所成角的最小值为60°; 其中正确的是________(填写所有正确结论的编号) 13、(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 的中点.(12分) (Ⅰ)设P是 上的一点,且AP⊥BE,求∠CBP的大小; (Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小. 14、(2017·天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面BDE; (Ⅱ)求二面角C﹣EM﹣N的正弦值; (Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长. 15、(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点. (Ⅰ)证明:CE∥平面PAB; (Ⅱ)求直线CE与平面PBC所成角的正弦值. 17、(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°. (Ⅰ)求异面直线A1B与AC1所成角的余弦值; (Ⅱ)求二面角B﹣A1D﹣A的正弦值. 18、(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC; (Ⅱ)AD⊥AC. 19、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点. (Ⅰ)证明:直线CE∥平面PAB; (Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值. 20、(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. (Ⅰ)证明:平面ACD⊥平面ABC; (Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值. 第 4 页 共 4 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服