收藏 分销(赏)

河南概率高考历年真题(文科).doc

上传人:仙人****88 文档编号:11978839 上传时间:2025-08-25 格式:DOC 页数:6 大小:1.59MB 下载积分:10 金币
下载 相关 举报
河南概率高考历年真题(文科).doc_第1页
第1页 / 共6页
河南概率高考历年真题(文科).doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
数列高考历年真题 07年 (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有 (A)36种 (B)48种 (C)96种 (D)192种 (13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5—501.5g之间的概率约为_____________________________.0.25 18.(本小题满分12分) 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元。 (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件商品,商场获得利润不超过650元的概率. 18.解: (1)记A表示事件:“3位顾客中至少1位采用一次性付款”, 则表示事件“3位顾客中无人采用一次性付款”. , . (2)记B表示事件:“3位复课每人购买1件该商品,商场获得利润不超过650元”, B0 表示事件:“购买该商品的3位顾客中无人采取分期付款”, B1 表示事件:“购买该商品的3位顾客中恰有1位采取分期付款”. 则 B =B0 + B1 , , , 08 12.将1,2,3填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有 A.6种 B.12种 C.24种 D.48种 1 2 3 3 1 2 2 3 1 20.(本小题满分12分) (注意:在试题卷上作答无效) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解: 记A1、A2分别表示依方案甲需化验1次、2次, B表示依方案乙需化验3次, A表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A2与B独立,且 ,,。 P()=P(A1+A2·B) =P(A1)+P(A2·B) =P(A1)+P(A2)·P(B) = = 所以 P(A)=1-P()==0.72 09 (7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A)150种 (B)180种 (C)300种 (D)345种 (20)(本小题满分12分)(注意:在试题卷上作答无效) 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率; (Ⅱ)求甲获得这次比赛胜利的概率。 20.解: 记表示事件:第i局甲获胜, 表示事件:第局乙获胜, (I)记A表示事件:再赛2局结束比赛 由于各局比赛结果相互独立,故 (II)记B表示事件:甲获得这次比赛的胜利 因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而 由于各局比赛结果相互独立,故 10年 (6) 某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门。若要求两类课程中各至少一门,则不同的选法共有( ) (A)30种 (B)35种 (C)42种 (D)48种 (18)(本小题满分12分)(注意:在试题卷上作答无效) 投到某杂志的稿件,先由两位专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用。设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3。各专家独立评审。 (Ⅰ)求投到该杂志的1篇稿件被录用的概率; (Ⅱ)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望。 A 12年 18. 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。 .
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服