资源描述
数列高考历年真题
07年
(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有
(A)36种 (B)48种 (C)96种 (D)192种
(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
492 496 494 495 498 497 501 502 504 496
497 503 506 508 507 492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5—501.5g之间的概率约为_____________________________.0.25
18.(本小题满分12分)
某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元。
(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;
(Ⅱ)求3位顾客每人购买1件商品,商场获得利润不超过650元的概率.
18.解:
(1)记A表示事件:“3位顾客中至少1位采用一次性付款”,
则表示事件“3位顾客中无人采用一次性付款”.
,
.
(2)记B表示事件:“3位复课每人购买1件该商品,商场获得利润不超过650元”,
B0 表示事件:“购买该商品的3位顾客中无人采取分期付款”,
B1 表示事件:“购买该商品的3位顾客中恰有1位采取分期付款”.
则 B =B0 + B1 ,
, ,
08
12.将1,2,3填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有
A.6种 B.12种 C.24种 D.48种
1
2
3
3
1
2
2
3
1
20.(本小题满分12分)
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
(20)解:
记A1、A2分别表示依方案甲需化验1次、2次,
B表示依方案乙需化验3次,
A表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A2与B独立,且
,,。
P()=P(A1+A2·B)
=P(A1)+P(A2·B)
=P(A1)+P(A2)·P(B)
=
=
所以 P(A)=1-P()==0.72
09
(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
(A)150种 (B)180种 (C)300种 (D)345种
(20)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
20.解:
记表示事件:第i局甲获胜,
表示事件:第局乙获胜,
(I)记A表示事件:再赛2局结束比赛
由于各局比赛结果相互独立,故
(II)记B表示事件:甲获得这次比赛的胜利
因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而
由于各局比赛结果相互独立,故
10年
(6) 某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门。若要求两类课程中各至少一门,则不同的选法共有( )
(A)30种 (B)35种 (C)42种 (D)48种
(18)(本小题满分12分)(注意:在试题卷上作答无效)
投到某杂志的稿件,先由两位专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用。设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3。各专家独立评审。
(Ⅰ)求投到该杂志的1篇稿件被录用的概率;
(Ⅱ)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望。
A
12年
18.
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
.
展开阅读全文