收藏 分销(赏)

同位角、内错角、同旁内角巩固练习.doc

上传人:天**** 文档编号:11229525 上传时间:2025-07-09 格式:DOC 页数:6 大小:320.01KB 下载积分:6 金币
下载 相关 举报
同位角、内错角、同旁内角巩固练习.doc_第1页
第1页 / 共6页
同位角、内错角、同旁内角巩固练习.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
【巩固练习】 一、选择题 1.如图,直线AD、BC被直线AC所截,则∠1和∠2是( ). A.内错角 B.同位角 C.同旁内角 D.对顶角 2.如图,能与构成同位角的有( ). A.4个 B.3个 C.2个 D.1个 3.如图,下列说法错误的是( ). ①∠1和∠3是同位角; ②∠1和∠5是同位角; ③∠1和∠2是同旁内角; ④∠1和∠4是内错角. A.①② B.②③ C.②④ D.③④ 4.若∠1与∠2是同位角,则它们之间的关系是( ). A.∠1=∠2 ; B.∠1>∠2 ; C.∠1<∠2; D.∠1=∠2或∠1>∠2或∠1<∠2. 5.(2015•宿迁)如图所示,直线a,b被直线c所截,∠1与∠2是(  ) A.同位角 B.内错角 C.同旁内角 D.邻补角 6. 已知图(1)—(4): 在上述四个图中,∠1与∠2是同位角的有( ). A.(1)(2)(3)(4) B.(1)(2)(3) C.(1)(3) D.(1) 7.如图,下列结论正确的是( ). A.∠5与∠2是对顶角; B.∠1与∠3是同位角; C.∠2与∠3是同旁内角; D.∠1与∠2是同旁内角. 8.在图中,∠1与∠2不是同旁内角的是 ( ). 二、填空题 9.(2015•鞍山二模)如图,当直线BC、DC被直线AB所截时,∠1的同位角是_______,同旁内角是_______;当直线AB、AC被直线BC所截时,∠1的同位角是________;当直线AB、BC被直线CD所截时,∠2的内错角是________. 10.如图, (1)∠1和∠ABC是直线AB、CE被直线________所截得的________角; (2)∠2和∠BAC是直线CE、AB被直线________所截得的________角; (3)∠3和∠ABC是直线________、________被直线________所截得的________角; (4)∠ABC和∠ACD是直线________、________被直线 所截得的________角; (5)∠ABC和∠BCE是直线________、________被直线 所截得的________角. 11.如图,若∠1=95°,∠2=60°,则∠3的同位角等于________,∠3的内错角等于________,∠3的同旁内角等于________. 12.如图,在图中的∠1、∠2、∠3、∠4、∠5和∠B中,同位角是________,内错角是________,同旁内角是________. 13.如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个. 14.如图,三条直线两两相交,其中同旁内角共有 对,同位角共有 对,内错角共有 对. 三、解答题 15.如图,∠1和哪些角是内错角? ∠1和哪些角是同旁内角? ∠2和哪些角是内错角? ∠2和哪些角是同旁内角?它们分别是由哪两条直线被哪一条线截成的? 16.指出图中的同位角、内错角、同旁内角. 17. (2015春•惠城区期中)指出图中各对角的位置关系: (1)∠C和∠D是   角; (2)∠B和∠GEF是   角; (3)∠A和∠D是   角; (4)∠AGE和∠BGE是   角; (5)∠CFD和∠AFB是   角. 【答案与解析】 一、选择题 1. 【答案】A 【解析】∠1与∠2是直线AD、BC被直线AC所截而成,且这两角都在被截线AD、BC之间,在截线AC两侧,所以为内错角. 2.【答案】B 【解析】如图,与能构成同位角的有:∠1,∠2,∠3. 3. 【答案】C 【解析】②错因:∠1与∠5没有公共边,不是“三线八角”中的角;④错因:∠4没在截线的内侧,所以∠1与∠4不是内错角. 4. 【答案】D 【解析】由两角是同位角,内错角或同旁内角得不出它们大小之间的关系. 5.【答案】A. 6. 【答案】C 【解析】图(2)或图(4)中的∠1与∠2没有公共边,不属于“三线八角”中的角. 7. 【答案】D 8. 【答案】D 【解析】选项D中∠1与∠2没有公共边,不属于“三线八角”中的角. 二、填空题 9.【答案】∠2, ∠5, ∠3, ∠4 【解析】先看哪两条线被哪一条线所截,再判断它们的关系. 10.【答案】(1)BD(或BC), 同位; (2)AC, 内错; (3)AB, AC, BC, 同旁内; (4)AB, AC, BC,同位; (5)AB, CE, BC,同旁内. 【解析】可以从复杂图形中抽出简单图形进行分析. 11.【答案】85°, 85°, 95° 【解析】∠3的同位角和内错角均与∠1互补,故它们的度数均为:180°-95°=85°, 而∠3的同旁内角是∠1的对顶角,所以∠3的同旁内角的度数等于∠1的度数. 12.【答案】∠l与∠B,∠4与∠B;∠2与∠5,∠3与∠4;∠2与∠4,∠3与∠5,∠3与∠B,∠B与∠5. 13.【答案】3,2,2 【解析】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8. 14.【答案】6, 12, 6 【解析】每个“三线八角”中共有4对同位角,2对内错角,2对同旁内角,而两两相交,且不交于同一点的三条直线共有三个“三线八角”,所以同旁内角共有:(对),同位角共有:(对),同旁内角共有:(对). 三、解答题 15. 【解析】 解:∠1和∠DAB是内错角,由直线DE和BC被直线AB所截而成; ∠1和∠BAC是同旁内角,由直线BC和AC被直线AB所截而成; ∠1和∠2也是同旁内角,是直线AB和AC被直线BC所截而成; ∠1和∠BAE也是同旁内角,是直线DE和BC被直线AB所截而成; ∠2和∠EAC是内错角,是直线DE和BC被直线AC所截而成; ∠2和∠BAC是同旁内角,是直线AB和BC被直线AC所截而成; ∠2和∠1也是同旁内角,是直线AB和AC被直线BC所截而成; ∠2和∠DAC也是同旁内角,是直线DE和BC被直线AC所截而成. 16.【解析】 解:如图,可分解成三个基本图形,由图(1)得内错角:∠BAD和∠B; 由图(2)得同位角:∠DAE和∠C,同旁内角:∠CAD和∠C; 由图(3)得同位角:∠BAE和∠C,内错角:∠B和∠BAE,同旁内角:∠B和∠C,∠B和∠BAC,∠C和∠BAC. 即原图形中共有两组同位角,两组内错角,四组同旁内角. 17.【解析】 解:(1)∠C和∠D是同旁内角; (2)∠B和∠GEF是同位角; (3)∠A和∠D是内错角; (4)∠AGE和∠BGE是邻补角; (5)∠CFD和∠AFB是对顶角; 故答案为:(1)同旁内角 (2)同位角 (3)内错角 (4)邻补角 (5)对顶角
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服