资源描述
二次函数图像与性质复习
广西岑溪市糯垌镇第一中学 陈段风
一、学习目标:
1.1、二次函数的概念,作函数图象,据图象对二次函数的性质分;
2.二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。
背熟:二次函数的性质和特点:
1.二次函数的图象和性质要点
(一)形如, ,,, (a ≠0) 的二次函数
(五)二次函数y=ax2+bx+c(a≠0)的图象和性质
2.二次函数的图象和性质练习
(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;
(2)已知y = - nx 2 (n>0) , 则图象 ( )(填“可能”或“不可能”)过点A(-2,3)。
(3)抛物线y =x 2+3的开口向 ,对称轴是 ,顶点坐标是 ,是由抛物线y =x 2向 平移 个单位得到的;
(4)已知(如图)抛物线y = ax 2+k的图象,则a 0,k 0;若图象过A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。
(5)抛物线 y = 2 (x -0.5 ) 2+1 的开口向 , 对称轴 , 顶点坐标是
(6)若抛物线y = a (x+m) 2+n开口向下,顶点在第四象限,则a 0, m 0, n 0。
三.反馈练习
1.若无论x取何实数,二次函数y=ax2+bx+c的值总为负,那么a、c应满足的条件是( )
A.a>0且b2-4ac≥0 B.a>0且b2-4ac>0
C.a<0且b2-4ac<0 D.a <0且b2-4ac ≤0
2.已知二次函数y=ax2+bx+c的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, c 0 ,∆ 0 , a-b+c 0,a+b+c 0
四、练习
1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。
2.若a+b+c=0,a¹0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式.
3、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,∠ACB=90°,求抛物线解析式。
A
B
x
y
O
C
第3题图 第4题图
4、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大;
(2)、当x为何值时,y<0。
(3)、求它的解析式和顶点坐标;
5、抛物线 的对称轴及顶点坐标分别是( )
A、y轴,(0,-4) B、x=3,(0,4)
C、x轴,(0,0) D、y轴, (0,3)
五、课堂小结:
1.理解二次函数的概念;
2.会用描点法画出二次函数的图象;
3.会用配方法和公式确定抛物线的开口方向,对称轴,顶点坐标;
4.会用待定系数法求二次函数的解析式;
展开阅读全文