收藏 分销(赏)

九年级上《反比例函数》单元测试卷含答案.doc

上传人:知****运 文档编号:11225176 上传时间:2025-07-08 格式:DOC 页数:10 大小:243.01KB 下载积分:8 金币
下载 相关 举报
九年级上《反比例函数》单元测试卷含答案.doc_第1页
第1页 / 共10页
九年级上《反比例函数》单元测试卷含答案.doc_第2页
第2页 / 共10页


点击查看更多>>
资源描述
《反比例函数》单元检测   一.选择题(共10小题) 1.已知函数y=(m+2)是反比例函数,且图象在第二、四象限内,则m的值是(  ) A.3 B.﹣3 C.±3 D.﹣ 2.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是(  ) A.y=6x B.y= C.y= D.y= 3.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是(  ) A. B. C. D. 4.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是(  ) A.m<﹣3 B.m<0 C.m>﹣3 D.m>0 5.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数 y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上, 则S平行四边形ABCD为(  ) A.2 B.3 C.4 D.5 6.(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是(  ) A.y1<y3<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3 7.(2016•株洲)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(  ) 第10题图 A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5 8.在同一直角坐标平面内,如果直线y=k1x与双曲线y=没有交点,那么k1和k2的关系一定是(  ) A.k1+k2=0 B.k1•k2<0 C.k1•k2>0 D.k1=k2 9.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是(  ) 体积x(mL) 100 80 60 40 20 压强y(kPa) 60 75 100 150 300 A.y=3 000x B.y=6 000x C.y= D.y= 10.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的(  ) A.7:00 B.7:10 C.7:25 D.7:35   二.填空题(共8小题) 11.在①y=2x﹣1;②y=﹣;③y=5x﹣3;④y=中,y是x的反比例函数的有       (填序号). 12.(2016•邵阳)已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是      (写一个即可). 13.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是      . 第13题图 第14题图 14.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为 (﹣2,3),则点B的坐标为      . 15.已知反比例函数y=﹣,则有 ①它的图象在一、三象限: ②点(﹣2,4)在它的图象上; ③当l<x<2时,y的取值范围是﹣8<y<﹣4; ④若该函数的图象上有两个点A (x1,y1),B(x2,y2),那么当x1<x2时,y1<y2 以上叙述正确的是      . 16.(2016•荆州)若12xm﹣1y2与3xyn+1是同类项,点P(m,n)在双曲线上,则a的值为      . 17.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=      . 第18题图 第17题图 18.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是      .   三.解答题(共6小题) 19.己知函数y=为反比例函数. (1)求k的值; (2)它的图象在第      象限内,在各象限内,y随x增大而      ;(填变化情况) (3)求出﹣2≤x≤﹣时,y的取值范围. 20.在平面直角坐标系xOy中,反比例函数y=(k>0)的图象经过点A(2,m),连接OA,在x轴上有一点B,且AO=AB,△AOB的面积为2. (1)求m和k的值; (2)若过点A的直线与y轴交于点C,且∠ACO=30°,请直接写出点C的坐标. 21.(2016•广安)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(﹣1,6),B(a,﹣2). (1)求一次函数与反比例函数的解析式; (2)根据图象直接写出y1>y2时,x的取值范围. 22.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m). (1)求菱形OABC的周长; (2)求点B的坐标. 23.某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值) (1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式? (2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数. 24.已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点. (1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B的坐标: (3)根据函数图象,求不等式>2x﹣1的解集; (4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.   《反比例函数》单元检测 参考答案   一.选择题(共10小题) 1. B. 2. C. 3. D. 4. C. 5. D. 6. D. 7. D. 8. B. 9. D. 10. B.   二.填空题(共8小题) 11. ①④ (填序号). 12. ﹣1 (写一个即可). 13. k1<k3<k2 . 14. (2,﹣3) . 15. ②③ . 16. 3 . 17. 5kg/m3 .   18. b>2或b<﹣2 .   三.解答题(共6小题) 19.己知函数y=为反比例函数. (1)求k的值; (2)它的图象在第 二、四 象限内,在各象限内,y随x增大而 增大 ;(填变化情况) (3)求出﹣2≤x≤﹣时,y的取值范围. 【解答】解:(1)由题意得:k2﹣5=﹣1, 解得:k=±2, ∵k﹣2≠0, ∴k=﹣2; (2)∵k=﹣2<0, ∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大; 故答案为:二、四,增大; (3)∵反比例函数表达式为, ∴当x=﹣2时,y=2,当时,y=8, ∴当时,2≤y≤8.   20.在平面直角坐标系xOy中,反比例函数y=(k>0)的图象经过点A(2,m),连接OA,在x轴上有一点B,且AO=AB,△AOB的面积为2. (1)求m和k的值; (2)若过点A的直线与y轴交于点C,且∠ACO=30°,请直接写出点C的坐标. 【解答】解:(1)由题意可知B(4,0), 过A作AH⊥x轴于H. ∵,AH=m,OB=4, ∴, ∴m=1, ∴A(2,1), ∴k=2. (2)C(0,1+)或C(0,1﹣).   21.(2016•广安)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(﹣1,6),B(a,﹣2). (1)求一次函数与反比例函数的解析式; (2)根据图象直接写出y1>y2时,x的取值范围. 【解答】解:(1)把点A(﹣1,6)代入反比例函数y2=(m≠0)得: m=﹣1×6=﹣6, ∴. 将B(a,﹣2)代入得: ﹣2=, a=3, ∴B(3,﹣2), 将A(﹣1,6),B(3,﹣2)代入一次函数y1=kx+b得: ∴ ∴y1=﹣2x+4. (2)由函数图象可得:x<﹣1或0<x<3.   22.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m). (1)求菱形OABC的周长; (2)求点B的坐标. 【解答】解:(1)∵反比例函数y=的图象经过点C(3,m), ∴m=4. 作CD⊥x轴于点D,如图1, 由勾股定理,得OC==5. ∴菱形OABC的周长是20; (2)作BE⊥x轴于点E,如图2, ∵BC=OA=5,OD=3, ∴OE=8. 又∵BC∥OA, ∴BE=CD=4, ∴B(8,4). 23.某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值) (1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式? (2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数. 【解答】解:(1)∵每天运量×天数=总运量 ∴xy=3000 ∴y=(x>0); (2)设原计划x天完成,根据题意得: (1﹣20%)=, 解得:x=4 经检验:x=4是原方程的根, 答:原计划4天完成.   24.已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点. (1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B的坐标: (3)根据函数图象,求不等式>2x﹣1的解集; (4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由. 【解答】解:(1)∵一次函数的图象经过(a,b),(a+k,b+k+2)两点, ∴b=2a﹣1①,2a+2k﹣1=b+k+2②, ∴整理②得:b=2a﹣1+k﹣2, ∴由①②得:2a﹣1=2a﹣1+k﹣2, ∴k﹣2=0, ∴k=2, ∴反比例函数的解析式为:y==; (2)解方程组, 解得:,, ∴A(1,1),B(,﹣2); (3)根据函数图象,可得出不等式>2x﹣1的解集; 即0<x<1或x; (4)当AP1⊥x轴,AP1=OP1,∴P1(1,0), 当AO=OP2,∴P2(,0), 当AO=AP3,∴P3(2,0), 当AO=P4O,∴P4(﹣,0). ∴存在P点P1(1,0),P2(,0),P3(2,0),P4(﹣,0).  
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服