资源描述
第二章:统计
1、抽样方法:
①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多)
③分层抽样(总体中差异明显)
注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为。
2、总体分布的估计:
⑴一表二图:
①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:
①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
3、总体特征数的估计:
⑴平均数:; 取值为的频率分别为,则其平均数为; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据方差:;标准差:
注:方差与标准差越小,说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程
①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系
③线性回归方程:(最小二乘法)
注意:线性回归直线经过定点。
第三章:概率
1、随机事件及其概率:
⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;
⑶随机事件A的概率:.
2、古典概型:
⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:
①所有的基本事件只有有限个;
②每个基本事件都是等可能发生。
⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率.
3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。
⑵几何概型概率计算公式:;
其中测度根据题目确定,一般为线段、角度、面积、体积等。
4、互斥事件:
⑴不可能同时发生的两个事件称为互斥事件;
⑵如果事件任意两个都是互斥事件,则称事件彼此互斥。
⑶如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,
即:
⑷如果事件彼此互斥,则有:
⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。
①事件的对立事件记作
②对立事件一定是互斥事件,互斥事件未必是对立事件。
1、基本概念
⑴互斥事件:不可能同时发生的两个事件.
如果事件,其中任何两个都是互斥事件,则说事件彼此互斥.
当是互斥事件时,那么事件发生(即中有一个发生)的概率,等于事件分别发生的概率的和,即 .
⑵对立事件:其中必有一个发生的两个互斥事件.事件的对立事件通常记着.对立事件的概率和等于1. .
特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.
⑶相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.
当是相互独立事件时,那么事件发生(即同时发生)的概率,等于事件分别发生的概率的积.即 .
若A、B两事件相互独立,则A与、与B、与也都是相互独立的.
⑷独立重复试验
①一般地,在相同条件下重复做的次试验称为次独立重复试验.②独立重复试验的概率公式
如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个试验恰好发生次的概率
⑸条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B发生的概率.公式:
2、离散型随机变量
⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母等表示.
⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.
⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.
若是随机变量,是常数)则也是随机变量 并且不改变其属性(离散型、连续型).
3、离散型随机变量的分布列
⑴概率分布(分布列)
设离散型随机变量可能取的不同值为,…,,…,,
的每一个值()的概率,则称表
…
…
…
…
为随机变量的概率分布,简称的分布列.性质:① ②
⑵两点分布 如果随机变量的分布列为
0
1
则称服从两点分布,并称为成功概率.
⑶二项分布
如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是
其中,于是得到随机变量的概率分布如下:
0
1
…
k
…
n
…
…
我们称这样的随机变量服从二项分布,记作,并称p为成功概率.
判断一个随机变量是否服从二项分布,关键有三点:
①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了次;
③等概率性:在每次试验中事件发生的概率均相等.
注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是
⑷超几何分布 一般地, 在含有件次品的件产品中,任取件,其中恰有件次品数,则事件发生的概率为,于是得到随机变量的概率分布如下:
0
1
…
…
其中,.
我们称这样的随机变量的分布列为超几何分布列,且称随机变量服从超几何分布.
注:⑴超几何分布的模型是不放回抽样;
⑵超几何分布中的参数是其意义分别是 总体中的个体总数、N中一类的总数、样本容量.
4、离散型随机变量的均值与方差
⑴离散型随机变量的均值 一般地,若离散型随机变量的分布列为
…
…
…
…
则称为离散型随机变量的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.
性质:① ②若服从两点分布,则
③若,则
⑵离散型随机变量的方差
一般地,若离散型随机变量的分布列为
…
…
…
…
则称
为离散型随机变量的方差,并称其算术平方根为随机变量的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度.
越小,的稳定性越高,波动越小,取值越集中;越大,的稳定性越差,波动越大,取值越分散.
性质:①
②若服从两点分布,则
③若,则
5、正态分布
正态变量概率密度曲线函数表达式:,其中是参数,且.记作如下图:
专题八:统计案例
1、回归分析
回归直线方程,
其中相关系数:
2、独立性检验
假设有两个分类变量X和Y,它们的值域分另为{x1, x2}和{y1, y2},其样本频数22列联表为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度.
具体的做法是,由表中的数据算出随机变量的值,其中为样本容量,K2的值越大,说明“X与Y有关系”成立的可能性越大.
随机变量越大,说明两个分类变量,关系越强;反之,越弱。
时,X与Y无关;时,X与Y有95%可能性有关;时X与Y有99%可能性有关.
展开阅读全文