ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:379.51KB ,
资源ID:10522623      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10522623.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高考统计知识点总结.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考统计知识点总结.doc

1、第二章:统计 1、抽样方法: ①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显) 注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为。 2、总体分布的估计: ⑴一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。 ⑵茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。 3、总体特征数的估计

2、 ⑴平均数:; 取值为的频率分别为,则其平均数为; 注意:频率分布表计算平均数要取组中值。 ⑵方差与标准差:一组样本数据方差:;标准差: 注:方差与标准差越小,说明样本数据越稳定。 平均数反映数据总体水平;方差与标准差反映数据的稳定水平。 ⑶线性回归方程 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:(最小二乘法) 注意:线性回归直线经过定点。 第三章:概率 1、随机事件及其概率: ⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A的概率:. 2、古典概型:

3、 ⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。 ⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率. 3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。 ⑵几何概型概率计算公式:; 其中测度根据题目确定,一般为线段、角度、面积、体积等。 4、互斥事件: ⑴不可能同时发生的两个事件称为互斥事件; ⑵如果事件任意两个都是互斥事件,则称事件彼此互斥。 ⑶如果事件A,B互斥,那么事件A+B发生的概率,等

4、于事件A,B发生的概率的和, 即: ⑷如果事件彼此互斥,则有: ⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。 ①事件的对立事件记作 ②对立事件一定是互斥事件,互斥事件未必是对立事件。 1、基本概念 ⑴互斥事件:不可能同时发生的两个事件. 如果事件,其中任何两个都是互斥事件,则说事件彼此互斥. 当是互斥事件时,那么事件发生(即中有一个发生)的概率,等于事件分别发生的概率的和,即  . ⑵对立事件:其中必有一个发生的两个互斥事件.事件的对立事件通常记着.对立事件的概率和等于1. . 特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互

5、斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件. ⑶相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件. 当是相互独立事件时,那么事件发生(即同时发生)的概率,等于事件分别发生的概率的积.即 . 若A、B两事件相互独立,则A与、与B、与也都是相互独立的. ⑷独立重复试验 ①一般地,在相同条件下重复做的次试验称为次独立重复试验.②独立重复试验的概率公式

6、 如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个试验恰好发生次的概率    ⑸条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B发生的概率.公式: 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母等表示. ⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量. ⑷离散型随

7、机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出. 若是随机变量,是常数)则也是随机变量 并且不改变其属性(离散型、连续型). 3、离散型随机变量的分布列 ⑴概率分布(分布列) 设离散型随机变量可能取的不同值为,…,,…,, 的每一个值()的概率,则称表 … … … … 为随机变量的概率分布,简称的分布列.性质:① ② ⑵两点分布 如果随机变量的分布列为 0 1

8、 则称服从两点分布,并称为成功概率. ⑶二项分布 如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是 其中,于是得到随机变量的概率分布如下: 0 1 … k … n … … 我们称这样的随机变量服从二项分布,记作,并称p为成功概率. 判断一个随机变量是否服从二项分布,关键有三点: ①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了次; ③等概率性:在每次试验中事件发生的概率均相等. 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是 ⑷

9、超几何分布 一般地, 在含有件次品的件产品中,任取件,其中恰有件次品数,则事件发生的概率为,于是得到随机变量的概率分布如下: 0 1 … … 其中,. 我们称这样的随机变量的分布列为超几何分布列,且称随机变量服从超几何分布. 注:⑴超几何分布的模型是不放回抽样; ⑵超几何分布中的参数是其意义分别是 总体中的个体总数、N中一类的总数、样本容量. 4、离散型随机变量的均值与方差 ⑴离散型随机变量的均值 一般地,若离散型随机变量的分布列为 … … … … 则称为离散型随机变量的均值或数学期

10、望(简称期望).它反映了离散型随机变量取值的平均水平. 性质:① ②若服从两点分布,则 ③若,则 ⑵离散型随机变量的方差 一般地,若离散型随机变量的分布列为 … … … … 则称 为离散型随机变量的方差,并称其算术平方根为随机变量的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. 越小,的稳定性越高,波动越小,取值越集中;越大,的稳定性越差,波动越大,取值越分散. 性质:① ②若服从两点分布,则 ③若,则 5、正态分布 正态变量概率密度曲线函数表达式:,其中是参数,且.记作如

11、下图: 专题八:统计案例 1、回归分析 回归直线方程, 其中相关系数: 2、独立性检验 假设有两个分类变量X和Y,它们的值域分另为{x1, x2}和{y1, y2},其样本频数22列联表为:    y1 y2 总计 x1 a b a+b x2 c d c+d 总计 a+c b+d a+b+c+d   若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度. 具体的做法是,由表中的数据算出随机变量的值,其中为样本容量,K2的值越大,说明“X与Y有关系”成立的可能性越大. 随机变量越大,说明两个分类变量,关系越强;反之,越弱。 时,X与Y无关;时,X与Y有95%可能性有关;时X与Y有99%可能性有关.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服