收藏 分销(赏)

MIMO - 空时编码调制.ppt

上传人:s4****5z 文档编号:10469054 上传时间:2025-05-29 格式:PPT 页数:153 大小:6.78MB
下载 相关 举报
MIMO - 空时编码调制.ppt_第1页
第1页 / 共153页
MIMO - 空时编码调制.ppt_第2页
第2页 / 共153页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,*,国家重点实验室,MIMO,技术,李颖西安电子科技大学,Outlines,MIMO,技术概述,MIMO,信道模型,MIMO,信道容量,空时码的设计准则,以分集增益为目标的秩距离准则、迹距离准则,以分集增益和复用增益最佳折中的设计准则,典型的空时编码调制技术,STBC,STTC,空频码及空时频码,Turbo,空时结构,BLAST,及低复杂度的,MIMO,检测算法,2,MIMO,技术与空时编码概念的提出,70,年代,传输分集,(Transmitter Diversity),技术,1995,年,,MIMO,信道容量,(Bell Lab.),1996,年,,BLAST,空时结构,1998,年,,Tarokh,等系统地研究了空时码的设计思想及设计方法,提出了,STTC,和,OSTBC,两种空时编码方法,2003,年,,Zheng,和,Tse,提出了分集增益和复用增益的最佳折中问题,开辟了一个新的思路,2005,年,,GoldSmith,研究了,MIMO,广播信道的容量问题,由此引出了,MIMO,预编码技术及,Dirty Paper Coding,3,Outlines,概述,MIMO,信道模型,MIMO,信道容量,空时码的设计准则,以分集增益为目标的秩距离准则、迹距离准则,以分集增益和复用增益最佳折中的设计准则,典型的空时编码调制技术,BLAST,STBC,STTC,空频码及空时频码,Turbo,空时结构,低复杂度的,MIMO,检测算法,4,MIMO,信道模型,Chapter 7,的主要内容,7.1,确定性,MIMO,信道的容量,7.2 MIMO,信道的物理建模,7.3 MIMO,衰落信道的建模,5,MIMO,信道,6,7.1,确定性,MIMO,信道的容量,根据奇异值分解定理,信道矩阵,H,可写为:,和,其中,矩阵,V,和,U,分别为,的酉矩阵,,D,为,对角阵,,的特征值的均方根。,且矩阵,D,对角线上的元素为矩阵,两端同乘,V,+,,得:,m,n,时,,7,7.1.1,确定性,MIMO,信道的容量,空时信道可等价为,n,min,个不相交的并行子信道,每个子信道的增益等于矩阵,H,的一个奇异值。,Capacity is achieved by,waterfilling,over the,eigenmodes,of,H,.(Analogy to frequency-selective channels.),8,确定性,MIMO,信道的容量,其中,确定性,MIMO,信道的复用度由信道矩阵,H,的秩决定。,H,具有何种特性,才能获得较大的信道容量呢?,Exercise 1:,推导如下容量,9,确定性,MIMO,信道的容量,At high SNR,equal power allocation is optimal:,where,k,is the number of nonzero,i,2,s,i.e.the,rank,of H.,10,7.1.2Rank and Condition Number,The closer the,condition number,:,to 1,the higher the capacity.,在总功率增益相等的所有信道中,容量最大的信道就是全部奇异,值相等的信道。奇异值越不分散,高信噪比下的容量越大。,如何才能获得具有上述特性的信道矩阵,H,呢?,11,Example 1:SIMO,Line-of-sight,h,is along the,receive spatial signature,in the direction,:=,cos,:,7.2 MIMO,信道的物理建模,12,Example 1:SIMO,Line-of-sight,n,r,fold,power gain,.,7.2 MIMO,信道的物理建模,对于,SIMO,信道,如果发射天线与接收天线之间只有一条视距路径,,则只有功率增益,没有复用增益。,单位空间特征图,13,Example 2:MISO,Line-of-Sight,h,is along the,transmit spatial signature,in the direction,:=,cos,:,7.2 MIMO,信道的物理建模,14,Example 2:MISO,Line-of-Sight,n,t,fold,power gain,.,7.2 MIMO,信道的物理建模,对于,MISO,信道,如果发射天线与接收天线之间只有一条视距路径,,则只有功率增益,没有复用增益。,15,Example 3:MIMO,Line-of-Sight,7.2 MIMO,信道的物理建模,16,Example 3:MIMO,Line-of-Sight,H,为具有唯一非零奇异值 的秩为,1,的矩阵,此时信道容量为:,No spatial multiplexing gain.,n,r,n,t,fold power gain,7.2 MIMO,信道的物理建模,对于,MIMO,信道,如果发射天线与接收天线之间只有一条视距路径,,则只有功率增益,没有复用增益。,17,7.2 MIMO,信道的物理建模,根据前述关于仅存在视距路径的结果,可推出,:,如果发射天线与接收天线之间只有一条视距路径,则只有功率增益,没有复用增益。,18,Example 4:MIMO,Tx,Antennas Apart,h,i,is the receive spatial signature from,Tx,antenna,i,along direction,i,=,cos,ri,:,Two,degrees of freedom if h,1,and h,2,are different.,7.2 MIMO,信道的物理建模,19,Example 5:Two-Path MIMO,A,scattering,environment provides multiple degrees of freedom even when the antennas are close together.,7.2 MIMO,信道的物理建模,20,Example 5:Two-Path MIMO,A,scattering,environment provides multiple degrees of freedom even when the antennas are close together.,7.2 MIMO,信道的物理建模,21,Rank and Conditioning,Question:,Does spatial multiplexing gain increase without bound as the number of,multipaths,increase?,The rank of H increases but looking at the rank by itself is not enough.,The condition number matters,.,As the,angular separation,of the paths decreases,the condition number gets worse.,7.2 MIMO,信道的物理建模,22,Back to Example 4,h,i,is the receive spatial signature from,Tx,antenna,i,along direction,i,=,cos,ri,:,Condition number,depends on,7.2 MIMO,信道的物理建模,23,Back to Example 4,7.2 MIMO,信道的物理建模,24,Angular Resolution,7.2 MIMO,信道的物理建模,25,Angular Resolution,对于固定的天线长度,L,r,而言,增加天线的数量不会从本质上改变上述性质图,参数,1/,L,r,而可看作角域中分辨力的一种测度:如果 ,来自两幅发射天,线的信号就不能被接收天线阵列区分开,只存在一个自由度,7.2 MIMO,信道的物理建模,26,Beamforming,Pattern,The receive,beamforming,pattern,associated with,e,r,(,0,):,L,r,is the length of the antenna array,normalized to the carrier wavelength.,Beamforming,pattern gives the antenna gain in different directions.,But it also tells us about angular resolvability.,7.2 MIMO,信道的物理建模,27,Antenna array of length,L,r,provides angular resolution of 1/,L,r,:paths that arrive at angles closer is not very distinguishable.,7.2 MIMO,信道的物理建模,28,Varying Antenna Separation,Decreasing antenna separation beyond,/2 has no impact on angular resolvability.,Assume,/2 separation from,now on(so n=2L).,7.2 MIMO,信道的物理建模,29,确定性,MIMO,信道小结,(1),确定性,MIMO,信道容量由信道矩阵,H,的两个参数决定,信道矩阵,H,的秩,信道矩阵,H,的条件数,即,H,的最大奇异值与最小奇异值的比值,地理位置上间隔发射天线,两个入射角不同,信道矩阵,H,的秩为,2,两个入射角余弦差值远小于,1/,L,r,时,信道矩阵,H,的两个奇异值差别较大,,H,为病态矩阵,两个入射角余弦差值与,1/,L,r,相当时,信道矩阵,H,的两个奇异值相当,,H,为良态矩阵,30,确定性,MIMO,信道小结,(2),接收波束成形方向图,如果信号从方向 到达接收端,则最佳接收机会将接收信号投影到矢量 ,来自其他任一方向 上的信号衰减因子为,在周围以及满足如下条件的任意角度都存在主辦,主瓣的方向余弦宽度为,2/,L,r,,也称之为波束宽度。阵列长度,L,r,越大,波束就越窄,角度分辨力也越高。,天线阵列长度,L,r,与无线信道带宽,W,的作用存在相似性:,1/W,度量时间域中信号的分辨力,即接收机不能区分以远小于,1/W,的时间间隔达到的多径信号;,1/,L,r,度量了角域中信号的分辨力,即接收机不能区分以远小于,1/,L,r,的角度间隔到达的多径信号。,31,7.3 MIMO,衰落信道的建模,Recall how we modeled,multipath,channels in Chapter 2.,Start with a deterministic continuous-time model.,Sample to get a discrete-time tap delay line model.,The physical paths are grouped into delay bins of width 1/W seconds,one for each tap.,Each tap gain h,l,is an aggregation of several physical paths and can be modeled as Gaussian.,We can follow the same approach for MIMO channels.,32,7.3.1,基本方法概述,发射天线阵列长度,L,t,和接收天线阵列长度,L,r,控制着角域的可分辨程度,天线阵列无法区分发射方向余弦之差小于,1/,L,t,并且接收方向余弦之差小于,1/,L,r,的路径。,角域中,发射机应以固定的角度间隔,1/,L,t,进行采样,接收机应以固定的角度间隔,1/,L,r,进行采样。,角坐标中,第,(,k,l,),个信道增益粗略地等于发射方向余弦位于,l,/,L,t,周围的宽度为,1/,L,t,的角窗口内的所有路径,与接收方向余弦位于,k,/,L,r,周围的宽度为,1/,L,r,的角窗口内的所有路径之和。,33,7.3.1,基本方法概述,The outgoing paths are grouped into resolvable bins of angular width 1/,L,t,The incoming paths are grouped into resolvable bins of angular width 1/,L,r,.,The(,k,l,),th,entry of,H,a,is(approximately)the aggregation of paths in,Can statistically model each entry as independent,and Gaussian.,Bins that have no paths will have zero entries in,H,a,.,34,7.3.2 MIMO,多径信道,窄带,MIMO,信道为,假设发射机与接收机之间存在任意数量的物理路径,第,i,条路径的衰减为,a,i,,则信道矩阵,H,为:,35,7.3.3,信号,与信道,的角域表示,通常意义下,我们所理解的发送信号,x,和接收信号,y,是不考虑方向的。,信号的角域表示,是将接收信号或发送信号按照天线阵列的分辨力,近似分解为几个不同物理方向上的路径,接收信号的正交基为,发送信号的正交基为,36,7.3.3,信号,与信道,的角域表示,The angular transformation decomposes the received(transmit)signals into components arriving(leaving)in different directions.,37,7.3.3,信号,与信道,的角域表示,Input,output,in angular domain:,so,第,l,个发射角域区域到第,k,个接收角域区域的信道增益,38,7.3.3,信号,与信道,的角域表示,第,l,个发射角域区域到第,k,个接收角域区域的信道增益,在包含大量物理路径的角域区域,(,k,l,),中,利用中心极限定理,增益 近似为一个,复循环高斯随机过程。,在不包含任何路径的角域区域,(,k,l,),中,元素 近似为零。,对于接收端和发送端具有有限角度扩展的信道,,H,a,的大量元素为,0,。,39,Examples,7.3.3,信号,与信道,的角域表示,40,7.3.3,信号与信道的角域表示,在包含大量物理路径的角域区域,(,k,l,),中,利用中心极限定理,增益 近似为一个,复循环高斯随机过程。,在不包含任何路径的角域区域,(,k,l,),中,元素 近似为零。,H,与,H,a,具有相同的分布。,41,7.3.4,自由度与分集,1.MIMO,自由度,随机矩阵,H,a,的秩依概率,1,为,影响,H,a,的非零行数非零列数的因素主要为:,1),多径环境中的散射与反射量。反射体和散射体越多,矩阵,H,a,中的非零元素个数越大,2),发送天线阵列和接收天线阵列的长度。长度越长,角域分辨力越大,可分辨的路径数越多,矩阵,H,a,中的非零元素个数越多。,42,7.3.4,自由度与分集,Examples,43,克拉克模型,7.3.4,自由度与分集,若散射体和反射体在接收机周围,则发射端的角域扩展 小于,2,,接收端的角域扩展 为,2,,,MIMO,信道的自由度分析如下:,将发射端角域扩展 按照分辨力,1/Lt,划分,可得到 可分辨的路径,对应的信道矩阵,H,a,非零行数;,将接收端角域扩展,2,按照分辨力,1/Lt,划分,可得到,2Lt,条 可分辨的路径,对应的信道矩阵,H,a,非零列数。,综上,,MIMO,信道的自由度数量为:,44,克拉克模型,7.3.4,自由度与分集,若散射体和反射体同样位于发射机周围,则发射端的角域扩展 为,2,,,MIMO,信道的自由度数量为:,如果天线间隔为载波波长的一半,,MIMO,信道的自由度数量为:,45,Clustered Model,How many degrees of freedom are there in this channel?,7.3.4,自由度与分集,路径到达的方向余弦被划分为若干个不连续的区间,发射端的的方向余弦被划分为若干个不连续的区间,信道的自由度数量为,46,Clustered Model,For,L,t,L,r,large,number of,d.o.f,.:,where,7.3.4,自由度与分集,47,Clustered Model,For,L,t,L,r,large,number of,d.o.f,.:,where,7.3.4,自由度与分集,结论:,1,)角域扩展越大,自由度数量越多,2,)固定角域扩展,增大天线阵列的长度就可以从各,Cluster,中放大并分解路径,增加自由读,48,阵列长度对自由度的影响,7.3.4,自由度与分集,49,载波频率对自由度的影响,Measurements by,Poon,and Ho 2003.,7.3.4,自由度与分集,50,2.,分集,7.3.4,自由度与分集,在角域,MIMO,模型中,分集数量就是矩阵,H,a,中的非零元素数量,51,I.I.D.,Rayleigh,Model,Scatterers,at all angles from,Tx,and Rx.,H,a,i.i.d,.,Rayleigh,$,H,i.i.d,.,Rayleigh,52,Correlated Fading,When scattering only comes from certain angles,H,a,has zero entries.,Corresponding spatial H has correlated entries.,Same happens when antenna separation is less than,/2(but can be reduced to a lower-dimensional,i.i.d,.matrix),Angular domain model provides a physical explanation of correlation.,53,7.3.5 MIMO,信道容量,对于慢衰落信道,即信道的衰落矩阵,H,在很长一段时间不发生变化,或者变化很缓慢,则用中断概率,(Outage Probability),来描述信道容量,对于快衰落信道,即信道的衰落矩阵,H,在每个符号周期都发生变化,可用类似,shannon,信道容量来描述信道质量,Ergodic,信道容量,(,遍历信道容量,),54,MIMO,信道容量,Ergodic,信道容量,55,MIMO,信道容量,Ergodic,信道容量,High SNR,Hence,the full,r,degree of freedom is attained(),To get a large capacity,multiple transmit and multiple receive,antennas are needed.,在高信噪比区域,信道容量随,r,=,min,m,n,线性增加。,56,空时信道容量,Ergodic,信道容量,For one transmit and m receive antenna,the capacity is,57,空时信道容量,Ergodic,信道容量,58,空时信道容量,Ergodic,信道容量,Low SNR,At low,snr,a,n,by,m,system yield a power gain of,m,over a single,antenna system.,Thus,at low SNR and without channel knowledge at the transmitter,multiple transmit antennas are not very useful:,the performance of an,n,by,m,channel is comparable with that of a 1 by,m,channel,59,空时信道容量,Ergodic,信道容量,60,空时信道容量,Ergodic,信道容量,Large Antenna Array Regime,n,=,m,61,空时信道容量,Outage Capacity,62,利用,MIMO,资源的方式,利用,(,n,m,),信道提供的独立衰落系数增加分集增益,(Space-Time Coding,,空时编码技术,),利用,(,n,m,),信道提供的,r,个独立并行子信道传输数据,(Spatial Multiplexing,复用技术,),通过,Lattice,编码,实现分集增益与复用增益的折中,63,Outlines,概述,空时信道模型及空时信道容量,空时码的设计准则,以分集增益为目标的秩距离准则、迹距离准则,以分集增益和复用增益最佳折中的设计准则,典型的空时编码调制技术,STBC,STTC,空频码及空时频码,Turbo,空时结构,BLAST,及低复杂度的,MIMO,检测算法,64,空时码的设计准则,秩距离准则,(1998,年,,Tarokh,),迹距离准则,(Yuan,Jinhong,),分集增益与复用增益最佳折中设计准则,65,秩距离准则,适用于高信噪比时,r,是矩阵,的秩,,是矩阵,的非零特征值。,Pair-wise error probability,66,秩距离准则,适用于高信噪比时,准静态衰落信道下空时码的设计准则为:,秩准则,:,若要达到最大的分集增益,mn,,集合中的每一个 差矩阵 必须是满秩的,若最小秩为,r,,则分集增益最大可达,mr,行列式准则:若系统的分集增益为,mn,,计算集合,中每个 的非零特征值之积的,r,次平方根得到集,合 ,该集合中的最小值决定 编码增益。,67,秩距离准则,适用于高信噪比时,准静态衰落信道下,设计空时码的基本步骤为:,首先,根据秩准则,保证所设计的空时码可获得最大分集增益;,然后,行列式准则,从所有可获得满分集增益的空时编码方式中,选择可以获得最大编码增益的码字。,68,Space-Time Trellis Code-2,69,Orthogonal Space-Time Block Code-1,70,迹距离准则,适用于分集增益大于,4,的情况,准静态衰落信道下空时码的设计准则为:,Make Sure that the minimum rank r of matrix over all pairs of distinct,codewords,is such that,Maximize the minimum trace of matrix among all pairs of distinct,codewords,Note:,When the number of independent,subchannels,rm,is large,the channel converges to an AWGN channel.Thus,the code,design is the same as that for AWGN channel.,71,迹距离准则,适用于分集增益大于,4,的情况,72,迹距离准则,适用于分集增益大于,4,的情况,FER performance of the 4-state space-time trellis coded QPSK with 2 transmit antennas,73,Outlines,概述,空时信道模型及空时信道容量,空时码的设计准则,以分集增益为目标的秩距离准则,以分集增益和复用增益最佳折中的设计准则,典型的空时编码调制技术,STBC,STTC,空频码及空时频码,Turbo,空时结构,BLAST,及低复杂度的,MIMO,检测算法,74,Space-Time Block Code,发展概况,1,基于正交设计原理的正交,STBC,Almouti(1998),Tarokh(1998),Liang(2003)(m+1)/2m,其中,n=2m-1,或,2m,2,准正交,STBC(2001),以分集为代价换取速率,3,基于代数构造设计的非正交,STBC(2002),4.,线性弥散码,(2002),5.,基于,Lattice,的一类,STBC,码,(2004),75,Orthogonal Space-Time Block Code-1,76,Orthogonal Space-Time Block Code-3,n,=2,m,=1,OSTBC,77,Orthogonal Space-Time Block Code-2,优点,编译码简单,获得满分集,缺点,速率损失,无编码增益,是一种分集技术,78,Space-Time Trellis Code-1,发展概况,STTC Tarokh(1998),MTCM,Lin(2002),SOSTTC,Jafsrkhani,(2003),优化,成对错误概率,距离谱特性,79,Space-Time Trellis Code-2,80,Space-Time Trellis Code-3,Viterbi,译码算法,适用于非级连系统,MAP,算法,适用于级连系统,81,Space-Time Trellis Code-4,优点,能够获得编码增益,性能好,可获得满分集,缺点,实现复杂度较大,速率受限制,82,Linear Dispersion Codes-1,B.,Hassibi,and B.M.,Hochwald,High rate codes that are linear in space and time,IEEE Trans.On Information Theory,Vol.48,No.7,2002,pp1804-1823,Linear dispersion code can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases.,83,Linear Dispersion Codes-2,Linear-Dispersion Codes,s.t,.,is typically chosen from an,M,-PSK or,M,-QAM constellation,Rate:,The design of LD codes depends crucially on the choices of the parameters of T,Q and the dispersion matrices,A,q,B,q,With the LD codes,the dispersion matrices potentially transmit some combination of,each,symbol from,each,antenna at,every,channel use.,84,Linear Dispersion Codes-3,For example,T=2,n=2,Q=2,Rate:,85,Linear Dispersion Codes-4,Design Method,Choose,Choose,A,q,B,q,that solve the optimization problem,S.t,.,86,Space-Time Frequency Code-1,频率选择性衰落信道可等效为几个独立的平坦衰落子信道,频选,MIMO,系统可同时利用空间、时间和频率三维资源,由此引出空时、空频和空时频等几种不同编码方式,87,Space-Time Frequency Code-2,OFDM,系统下的空时编码,88,Space-Time Frequency Code-3,OFDM,系统下的空频编码,89,Space-Time Frequency Code-4,OFDM,系统下的空时频编码,90,Space-Time Frequency Code-5,多径传输,(,Multipath,),引起的频率选择性衰落为多天线宽带无线,MIMO,信道提供了额外的频率分集,适合于该信道的空频码和空时频码的基本设计目标则是能够经济、有效地利用,空间、时间和频率,三维资源,既能保证一定的分集增益,又可实现高速率的数据传输。,91,Layered Space-Time Code-1,发展概况,VLST,、,DLSTC(1996),Threaded STC(TSTC),(2001)IT No.6,Wrapped STC(WSTC)(2003)IT No.6,92,Layered Space-Time Code-2,Case1,:,且通过注水定理分配个功率,可获得最大信道容量,Case2,:,则独立数据流被发送到不同的发射天线,93,一种中断最优结构,D-BLAST,慢衰落信道下,中断概率,V-BLAST+MMSE-SIC,可在独立快衰落信道下达到,MIMO,信道容量,MIMO,信道本身提供的分集增益是,ntnr,V-BLAST,数据流通过分离的天线发射,因此各数据流的分集增益至多为,nr,:如果第,k,个数据流到所有接收天线的信道增益都处于深衰落,第,k,个数据流会丢失,慢衰落信道下,,V-BLAST,无法获取,MIMO,信道的最大分集增益,因此不能达到中断概率最优。,94,一种中断最优结构,D-BLAST,V-BLAST,结构的次优性,MMSE+SIC,时,有,如果信道处于中断状态,即,95,一种中断最优结构,D-BLAST,V-BLAST,结构的次优性,MMSE+SIC,时,有,如果信道处于中断状态,即,只有所有数据流的,SINR,不能够支持分配的数据速率时才会产生中断吗?,96,一种中断最优结构,D-BLAST,只要任意一个数据流的,SINR,不能够支持分配的数据速率时,就会产生中断,即当,时,,V-BLAST,就会出现中断。,对于,MIMO,信道而言,只有,时,信道才会出现中断。,97,一种中断最优结构,D-BLAST,D-BLAST,结构,无干扰信道下获得第一个码字,分组,A,的软估计,抑制来自天线,2,的干扰,得到第一个码字,分组,B,的软估计,合并两个分组的软估计,实现,第一个码字的译码,消除第一个码字,开始第二个码字,98,Parallel Channel Conversion,D-BLAST converts the MIMO channel into a parallel channel.,Any good time-diversity code can be used in conjunction with D-BLAST to achieve good outage performance.,99,分集增益与复用增益的最佳折中,-1,A key measure of the performance capability of a slow fading channel is the maximum diversity gain,For example,an(,n,m,)MIMO channel has a maximum diversity gain of,mn,i.e.,for a fixed target rate,R,the outage probability decays like at high SNR,The key performance benefit of a fast fading MIMO channel is the spatial multiplexing,capavility,it provides through the additional degree of freedom.,For example,the capacity of an(,n,m,)MIMO system over fast fading channel scales like,100,分集增益与复用增益的最佳折中,-2,In the slow fading scenario,the information rate allowed through the channel is a random variable fluctuating around the fast fading capacity.,One would expect to be able to benefit from the increased degree of freedom even in slow fading channel.,Yet,the maximum diversity gain provides no such indications.An(,n,m,)MIMO channel and a(,nm,1)channel can provide the same maximum diversity gain.,One need something more than the maximum diversity gain to capture the spatial multiplexing benefit over slow fading channel.,101,分集增益与复用增益的最佳折中,-3,A diversity gain is achieved at multiplexing gain,r,if,and,or more precisely,The curve is the diversity-multiplexing tradeoff of the slow,fading,chanel,.,102,分集增益与复用增益的最佳折中,-4,103,分集增益与复用增益的最佳折中,-,5,Adding one transmit and one receive antenna increases spatial multiplexing gain by 1 at each diversity level,104,Lattice Space Time Codes-1,Receiver:,Scheme,105,Lattice Space Time Codes-2,LAttice,Space Time(LAST)Codes:,where is the fundamental,Voronoi,region cell of ,a,sublattice,of ,and,u,is a dither signal with uniform distribution over,The MMSE-GDFE matrices(,F,B,),B,is an upper triangular matrix,106,Lattice Space Time Codes-3,Remark 1:LAST codes achieve the optimal diversity-multiplex
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服