资源描述
2016-2017学年北师大版六年级(上)期末数学试卷(16)
一、填空(共25分,其中第6、9题各2分,其它每空1分)
1.(2分)120的是 ,一个数的是240的,这个数是 .
2.(1分)÷表示 .
3.(3分)5吨= 吨 千克,80分= 小时.
4.(5分) :5==0.8= %= ÷40= 折.
5.(2分)一种商品降价25%现价是原价的 ,50米比40米多 %.
6.(2分)在○里填上“>”“<”或“=”.
12×○12
×7○×5+×2
÷○
÷120.5%○.
7.(2分)从甲城到乙城,货车要行5小时,客车要行6小时,货车的速度与客车的速度的最简比是 ,客车的速度比货车慢 .
8.(2分)小红小时行千米,她每小时行 千米,行1千米要用 小时.
9.(2分)小明家在学校东偏北40度方向上,距离学校1200米,学校在小明家 偏 度的方向上,距离 米.
10.(2分)把一个圆平均分成2014份完全相同的小扇形,割拼成近似的长方形的周长比原来圆的周长长10厘米,这个长方形的周长是 ,面积是多少 .
11.(2分)甲数是乙的1.2倍,乙比甲少 %,甲比乙多 %.
二、判断(5分,正确的打“√”,错误的打“×”)
12.(1分)比的前项和后项同时乘上或除以相同的数,比值不变. .(判断对错)
13.(1分)周长相等的两个圆,它们的面积也一定相等. .(判断对错)
14.(1分)男生比女生多20%,女生就比男生少20%. .(判断对错)
15.(1分)5千克盐溶解在100千克水中,盐水的含盐率是5%. .(判断对错)
16.(1分)一台电脑先提价5%,几天后又降价5%,这台电脑便宜了. . (判断对错)
三、选择(5分,把正确答案的序号填在括号里)
17.(1分)某工厂今年产值100万元,应给国家税务部门按10%纳税,这个工厂应该纳税( )万元.
A.10 B.110 C.90 D.5
18.(1分)一根绳子分成两段,第一段长米,第二段占全长的,( )绳子长一些.
A.第一段长 B.第二段长 C.一样长 D.无法确定
19.(1分)林场去年种植了10000棵树苗,年底抽查了其中的1000棵,死亡率是2%.你预计一下,林场种植的这批树苗的成活率是( )
A.20% B.80% C.2% D.98%
20.(1分)一个饲养场,养鸭1200只,养的鸡比鸭多20%,养的鸡比鸭多多少只?正确的列式是( )
A.12000×20% B.1200+12000×20%
C.1200﹣12000×20% D.1200÷20%
21.(1分)要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是( )平方厘米的正方形纸片(π取3.14).
A.12.56 B.14 C.16 D.20
四、计算题(共26分)
22.(5分)直接写出得数
÷3=
×15=
2﹣=
1+2%=
÷=
5÷=
×75%=
×4×=
+×=
×99+99×=
23.(9分)解方程
x﹣x=
x÷=15×
40%x﹣=.
24.(6分)下面各题怎样简便就怎样算
101×
×﹣÷
×32×
×71.
25.(6分)化简下面各比,并求出比值.
0.45:
:
20分钟:小时.
五、实践操作(共14分,1题8分,2题6分)
26.(8分)画一个周长是6.28cm的圆.标出圆心O,作出两条对称轴,并使这条对称轴把圆平均分成四等分,同时求圆的面积.
27.(6分)六年级有36人,每人只能参加一项课外活动,课外活动情况如图所示:
(1)喜欢 的人数最多,是 人.喜欢 的人数最少,是 人.
(2)喜欢羽毛球的有多少人?
六、应用题(共25分,1---3题每题2分,4-8每题3分,9题4分.)
28.(2分)学校把600本图书按3:2比例分给甲乙两年级,甲乙两个两个年级各分得图书多少本?
29.(2分)把长96厘米的铁丝折成长宽高的比为3:4:5的长方体框架,求这个长方体框架的体积?
30.(2分)一套学生专用课桌椅售价220元,其中桌子的价格比椅子贵,一张桌子售价多少元?
31.(3分)全班一共有38人,共租了8条船,每条船都坐满了.其中大船限坐6人,小船限坐4人,大船和小船各租了多少条?
32.(3分)修路对修一条路,第一天修理40%,第二天修理余下的20%,还剩480米,这段路一共有多少米?
33.(2分)小王和小张同时打一份稿件,5小时打了这份这稿件的.如果由小王单独打,10小时可以打完.求如果由小张单独打,几小时可以打完.(湖北当阳市)
34.(2分)一件工作,甲单独做需要12天,乙的工作效率是甲的,两个合做,几天能完成这件工作的?
35.(2分)一辆客车到达车站后有的乘客下车,又上车12人,这时车上的乘客比原来多5%,车上现在有多少人?
36.(2分)客车和货车同时从甲乙两地相向而行,4小时后,客车到达中点,货车离中点还有60千米.已知客车和货车的速度比是3:2,求甲乙两地相距多少千米?
37.(2分)在长跑训练中,小文跑了2000米,小丽跑的路程相当于小文的,小华跑的路程等于小丽的,小华跑了多少米?
38.(3分)某个体户,去年12月份营业收入5000元,按规定要缴纳3%的营业税.纳税后还剩多少钱?
2016-2017学年北师大版六年级(上)期末数学试卷(16)
参考答案与试题解析
一、填空(共25分,其中第6、9题各2分,其它每空1分)
1.(2分)120的是 72 ,一个数的是240的,这个数是 96 .
【分析】根据一个数乘分数的意义,用乘法解答即可;
先根据一个数乘分数的意义,用乘法求出240的,然后根据已知一个数的几分之几是多少,求这个数,用除法解答即可.
【解答】解:120×=72;
240×
=60÷
=96
答:120的是 72,一个数的是240的,这个数是 96.
故答案为:72,96.
【点评】解答此题的关键是:判断出单位“1”,单位“1”是已知的,用乘法,是未知的,用除法解答.
2.(1分)÷表示 已知两个数的积是和其中一个因数,求另一个因数是多少 .
【分析】根据分数除法的意义:已知两个数的积,和其中一个因数,求另一个因数的运算,直接填空即可.
【解答】解:÷表示 已知两个数的积是和其中一个因数,求另一个因数是多少.
故答案为:已知两个数的积是和其中一个因数,求另一个因数是多少.
【点评】解决本题关键是熟知分数除法的意义.
3.(3分)5吨= 5 吨 500 千克,80分= 小时.
【分析】(1)把5吨化成复名数,则将整数5作为吨数,吨根据进率化成千克数;
(2)分化成小时需要除以进率60.
【解答】解:5吨=5吨 500千克;
80分=小时.
故答案为:5;500;.
【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.
4.(5分) 4 :5==0.8= 80 %= 32 ÷40= 八 折.
【分析】把0.8化成分数并化简是,根据分数的基本性质分子、分母都乘10就是;根据比与分数的关系=4:5;根据分数与除法的关系=4÷5,再根据商不变的性质被除数、除数都乘8就是32÷40;把0.8的小数点向右移动两位添上百分号就是80%;根据折扣的意义80%就是八折.
【解答】解:4:5==0.8=80%=32÷40=八折.
故答案为:4,50,80,32,八.
【点评】解答此题的关键是0.8,根据小数、分数、百分数、除法、比、折扣之间的关系及分数的基本性质、商不变的性质即可进行转化.
5.(2分)一种商品降价25%现价是原价的 75% ,50米比40米多 25 %.
【分析】(1)把原价看成单位“1”,用1减去降价的百分数,就是现价是原价的百分之几;
(2)先用50米减去40米求出50米比40米多多少米,再用多的长度除以40米即可.
【解答】解:(1)1﹣25%=75%;
(2)(50﹣40)÷40
=10÷40
=25%
答:一种商品降价25%现价是原价的 75%,50米比40米多 25%.
故答案为:75%,25.
【点评】这种类型的题目属于基本的分数乘除应用题,只要找清单位“1”,利用基本数量关系解决问题.
6.(2分)在○里填上“>”“<”或“=”.
12×○12
×7○×5+×2
÷○
÷120.5%○.
【分析】一个数(0除外)乘小于1的数,积小于这个数;
一个数(0除外)乘大于1的数,积大于这个数;
一个数(0除外)除以小于1的数,商大于这个数;
一个数(0除外)除以大于1的数,商小于这个数;
其中第二小题运用乘法分配律判断;
据此解答.
【解答】解:12×<12
×7=×5+×2
÷>
÷120.5%<.
故答案为:<,=,>,<.
【点评】此题考查了不用计算判断因数与积之间大小关系、商与被除数之间大小关系的方法.
7.(2分)从甲城到乙城,货车要行5小时,客车要行6小时,货车的速度与客车的速度的最简比是 6:5 ,客车的速度比货车慢 .
【分析】(1)把从甲城到乙城的路程看作单位“1”,根据“路程÷时间=速度”分别求出货车和客车的速度,进而根据题意解答即可;
(2)把货车的速度看作单位“1”,根据“(大数﹣小数)÷单位“1”的量”进行解答.
【解答】解:(1)(1÷5):(1÷6)
=:
=6:5;
(2)(6﹣5)÷6
=1÷6
=
答:货车的速度与客车的速度的比是6:5,客车的速度比货车的速度慢.
故答案为:6:5,.
【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系;(3)判断出单位“1”,根据“(大数﹣小数)÷单位“1”的量”进行解答.
8.(2分)小红小时行千米,她每小时行 千米,行1千米要用 小时.
【分析】首先根据路程÷时间=速度,用除以,求出她每小时行多少千米;然后用小红行千米用的时间除以,求出她行1千米要用多少小时即可.
【解答】解:她每小时行:
÷=;
行1千米要用:
.
答:她每小时行千米,行1千米要用小时.
故答案为:.
【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.
9.(2分)小明家在学校东偏北40度方向上,距离学校1200米,学校在小明家 西 偏 南40 度的方向上,距离 1200 米.
【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.
【解答】解:小明家在学校东偏北40度方向上,距离学校1200米,学校在小明家西偏南40度的方向上,距离1200米.
故答案为:西,南40,1200.
【点评】本题主要考查方向的辨别,注意方向的相对性.
10.(2分)把一个圆平均分成2014份完全相同的小扇形,割拼成近似的长方形的周长比原来圆的周长长10厘米,这个长方形的周长是 41.4cm ,面积是多少 78.5cm2 .
【分析】把一个圆等分成若干个小扇形后拼成一个近似的长方形,周长比原来增加了10厘米,是因为近似的长方形的周长比圆的周长多了圆的两个半径.可求出圆的半径,又因为拼成的这个长方形的长等于圆周长的一半,宽等于圆的半径,根据长方形的周长和面积公式即可解答.
【解答】解:宽10÷2=5(厘米)
长3.14×5=15.7(厘米)
周长:(15.7+5)×2
=20.7×2
=41.4(厘米)
面积15.7×5=78.5(平方厘米)
答:这个长方形的周长是41.4厘米,面积是78.5平方厘米.
故答案为:41.4cm、78.5cm2.
【点评】此题解答关键是通过把圆转化成近似长方形,根据拼成的长方形的长=圆的周长的一半,宽=圆的半径;再根据长方形的面积公式解答.
11.(2分)甲数是乙的1.2倍,乙比甲少 16.7 %,甲比乙多 20 %.
【分析】设乙数是1,那么甲数就是1.2,先用甲数减去乙数,求出两数差,再用差除以甲数,就是乙数比甲数少百分之几,用两数差除以乙数,就是甲数比乙数多百分之几.
【解答】解:设乙数是1,那么甲数就是1×1.2=1.2;
(1.2﹣1)÷1.2
=0.2÷1.2
≈16.7%
(1.2﹣1)÷1
=0.2÷1
=20%
答:乙比甲少 16.7%,甲比乙多 20%.
故答案为:16.7,20.
【点评】解决本题先设出数据,表示出两个数,再根据求一个数是另一个数百分之几的方法求解.
二、判断(5分,正确的打“√”,错误的打“×”)
12.(1分)比的前项和后项同时乘上或除以相同的数,比值不变. × .(判断对错)
【分析】比的性质:比的前项和后项同时乘上或除以相同的数(0除外),比值不变.根据比的性质直接判断.
【解答】解:比的前项和后项同时乘上或除以相同的数,必须是0除外,比值才不变.
故判断为:×.
【点评】此题考查对比的性质内容的理解,比的前项和后项同时乘上或除以相同的数(0除外),比值不变,因为比的后项为0无意义.
13.(1分)周长相等的两个圆,它们的面积也一定相等. √ .(判断对错)
【分析】根据圆的周长公式、面积公式与半径的关系,可以得出结论.
【解答】解:根据圆的周长公式:C=2πr,可以得出两个圆周长相等,则它们的半径就相等;
再根据圆的面积公式:S=πr2,半径相等则面积就相等.
故答案为:√.
【点评】此题考查了圆的周长和面积.
14.(1分)男生比女生多20%,女生就比男生少20%. × .(判断对错)
【分析】由“男生人数比女生多20%”可知是把女生的人数看做单位“1”,男生的人数就是女生的(1+20%),再运用男生人数比女生多的20%除以(1+20%)就是女生人数比男生少百分之几.
【解答】解:20%÷(1+20%)≈16.67%
答:女生人数比男生人数少16.67%;
故答案为:×.
【点评】本题先找出单位“1”,把其它量用单位“1”表示出来,然后根据求一个数是另一个数百分之几的方法求解.
15.(1分)5千克盐溶解在100千克水中,盐水的含盐率是5%. 错误 .(判断对错)
【分析】根据“含盐率=盐的重量÷盐水的重量×100%”,盐的重量是5千克,盐水的重量是盐的重量加上水的重量,既(5+100)千克.据此解答判断即可.
【解答】解:含盐率是:
5÷(5+100)×100%,
=5÷105×100%,
≈4.76%;
答:含盐率是4.76%.
故答案为:错误.
【点评】本题的关键是明确:含盐率不是用盐的重量÷水的重量×100%,而是盐的重量除以盐水的重量.
16.(1分)一台电脑先提价5%,几天后又降价5%,这台电脑便宜了. √ . (判断对错)
【分析】将原价当作单位“1”,则先提价5%后的价格是原价的1+5%,几天后又降价5%,即将提价后的价格当作单位“1”,此时价格是提价后的1﹣5%,则是原价的(1+5%)×(1﹣5%).
【解答】解:(1+5%)×(1﹣5%)
=105%×95%
=99.75%
即此时价格是原价的99.75%,比原价便宜了.
故答案为:√.
【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再根据分数乘法的意义进行求解.
三、选择(5分,把正确答案的序号填在括号里)
17.(1分)某工厂今年产值100万元,应给国家税务部门按10%纳税,这个工厂应该纳税( )万元.
A.10 B.110 C.90 D.5
【分析】把总产值看作单位“1”,则运用乘法即可求出应该纳税多少万元.
【解答】解:100×10%=10(万元)
答:这个工厂应该纳税10万元.
故选:A.
【点评】求一个数的几分之几是多少用乘法计算即可.
18.(1分)一根绳子分成两段,第一段长米,第二段占全长的,( )绳子长一些.
A.第一段长 B.第二段长 C.一样长 D.无法确定
【分析】把这根绳子的长度看作单位“1”,第二段占全长的,则第一段就占全长的(1﹣)=,把这两段绳子所占的分率进行比较即可得出结论.
【解答】解:(1﹣)=,
>;
所以第一段比第二段长,
故选:A.
【点评】此题考查了分数的意义,要注意在本题中应用各段绳子占全长的对应分率来代替实际长度求解.
19.(1分)林场去年种植了10000棵树苗,年底抽查了其中的1000棵,死亡率是2%.你预计一下,林场种植的这批树苗的成活率是( )
A.20% B.80% C.2% D.98%
【分析】把抽查树苗的总量看成单位“1”,成活率=1﹣死亡率;抽查的概率就是总数量的概率.
【解答】解:1﹣2%=98%,
故选:D.
【点评】本题考查了成活率概念的认识,成活率和死亡率都是占总数的百分比,它们的和是单位“1”.
20.(1分)一个饲养场,养鸭1200只,养的鸡比鸭多20%,养的鸡比鸭多多少只?正确的列式是( )
A.12000×20% B.1200+12000×20%
C.1200﹣12000×20% D.1200÷20%
【分析】把鸭的只数看作单位“1”,已知鸡比鸭多20%,鸭1200只,运用乘法即可求出鸡比鸭多多少只.
【解答】解:1200×20%=240(只)
答:养的鸡比鸭多240只.
故选:A.
【点评】解答本题的关键是找准单位“1”,根据求一个数的几分之几是多少用乘法计算即可.
21.(1分)要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是( )平方厘米的正方形纸片(π取3.14).
A.12.56 B.14 C.16 D.20
【分析】由题意可知:需要的正方形纸张的边长应等于圆的直径,圆的面积已知,于是可以利用圆的面积求出半径的平方值,而正方形的边长等于2×半径,从而可以求出正方形纸张的面积.
【解答】解:设圆的半径为r,则正方形纸张的边长为2r,
则r2=12.56÷3.14,
=4;
正方形的面积:
2r×2r,
=4r2,
=4×4,
=16(平方厘米);
故选:C.
【点评】解答此题的关键是明白:正方形纸张的边长应等于圆的直径.
四、计算题(共26分)
22.(5分)直接写出得数
÷3=
×15=
2﹣=
1+2%=
÷=
5÷=
×75%=
×4×=
+×=
×99+99×=
【分析】根据分数、百分数四则运算的计算法则计算即可.
【解答】解:
÷3=
×15=9
2﹣=1
1+2%=1.02
÷=
5÷=
×75%=1
×4×=4
+×=
×99+99×=99
【点评】本题考查了分数和百分数的四则计算.
23.(9分)解方程
x﹣x=
x÷=15×
40%x﹣=.
【分析】①首先化简方程,然后依据等式的性质,方程两边同时乘求解;
②依据等式的性质,方程两边同时乘求解;
③依据等式的性质,方程两边同时加,再同时除以0.4求解.
【解答】解:①x﹣x=
x=
x×=×
x=
②x÷=15×
x÷×=15××
x=1
③40%x﹣=
40%x﹣+=+
0.4x=
0.4x÷0.4=÷0.4
x=2
【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.
24.(6分)下面各题怎样简便就怎样算
101×
×﹣÷
×32×
×71.
【分析】(1)把101看作(100+1),根据乘法分配律解答.
(2)把除以写成乘,根据乘法分配律解答.
(3)把32看作4×8,根据乘法结合律即可解答.
(4)把71看作(70+1),根据乘法分配律解答.
【解答】解:(1)101×
=(100+1)×
=100×+1×
=7+
=7;
(2)×﹣÷
=×﹣×
=(+)×
=10×
=;
(3)×32×
=×4×8×
=(×4)×(8×)
=1×1
=1;
(4)×71
=×(70+1)
=24+
=24.
【点评】解答此题的关键是乘法分配律的熟练、灵活运用.
25.(6分)化简下面各比,并求出比值.
0.45:
:
20分钟:小时.
【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘或除以一个数(0除外)比值不变;
(2)用比的前项除以后项即可求出比值;
(3)第三题先换算成统一单位,再利用比的基本性质进行解答即可.
【解答】解:(1)0.45:
=0.45:0.25
=45:25
=(45÷5):(25÷5)
=9:5
0.45:
=0.45÷
=0.45×4
=1.8
(2):
=(×90):(×90)
=25:81
:
=÷
=×
=
(3)20分钟:小时
=20分钟:40分钟
=(20÷20):(40÷20)
=1:2
20分钟:小时
=20分钟:40分钟
=20÷40
=
【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.
五、实践操作(共14分,1题8分,2题6分)
26.(8分)画一个周长是6.28cm的圆.标出圆心O,作出两条对称轴,并使这条对称轴把圆平均分成四等分,同时求圆的面积.
【分析】根据画圆时“圆心定位,半径定大小”,首先在平面上取一点O为圆心,再根据圆周长计算公式“C=2πr”求出圆半径,即可画圆.圆的直径所在的直线是圆的对称轴,圆有无数条对称轴,在圆内过互相垂直的两条直径画对称轴即可;根据圆的面积计算公式“S=πr2”即可求得这个圆的面积.
【解答】解:6.28÷3.14÷2=1(cm)
即所画的圆的半径是1厘米,在平面上取一点O为圆心,画圆并作出两条对称轴,并使这条对称轴把圆平均分成四等分如下:
这个圆的面积:3.14×12=3.14(cm2)
【点评】解答此题的关键求出半径.求圆半径、计算圆面积的关键是记住并会灵活运用相关计算公式.
27.(6分)六年级有36人,每人只能参加一项课外活动,课外活动情况如图所示:
(1)喜欢 乒乓球 的人数最多,是 14 人.喜欢 羽毛球 的人数最少,是 4 人.
(2)喜欢羽毛球的有多少人?
【分析】(1)把喜欢各项课外活动人数占的百分比进行比较,可知喜欢什么的人数最多,最少,根据求一个数的百分之几是多少用乘法计算,可求出各有多少人;
(2)根据求一个数的百分之几是多少用乘法计算,用总人乘喜欢羽毛球占的百分比,解答即可.
【解答】解:(1)1﹣40%﹣30%﹣18%=12%
40%>30%>18%>12%,所以喜欢乒乓的人数最多,喜欢羽毛球的人数最少;
喜欢乒乓球:36×40%=14.4≈14(人)
喜欢羽毛球:36×12%=4.32≈4(人)
答:喜欢乒乓球的人数最多,大约14人.喜欢羽毛球的人数最少,大约4人.
(2)36×12%=4.32≈4(人)
答:喜欢羽毛球的有4人.
故答案为:乒乓球、14、羽毛球、4.
【点评】本题主要考查了学生根据扇形统计图分析数量关系解答问题的能力.
六、应用题(共25分,1---3题每题2分,4-8每题3分,9题4分.)
28.(2分)学校把600本图书按3:2比例分给甲乙两年级,甲乙两个两个年级各分得图书多少本?
【分析】分别求得甲、乙两个年级各分得图书总本数的、,再利用乘法的意义列式解答即可.
【解答】解:600×
=600×
=360(本)
600×
=600×
=240(本),
答:甲年级分得360本,乙年级分得240本.
【点评】此题考查按比例分配的应用:知道两个数的和与这两个数的比,分别求这两个数,用按比例分配解答.
29.(2分)把长96厘米的铁丝折成长宽高的比为3:4:5的长方体框架,求这个长方体框架的体积?
【分析】把长96厘米的铁丝折成一个长方体,也就是这个长方体的棱长总和是96厘米,用棱长总和除以4求出长、宽、高的和,已知长宽高的比为3:4:5,分别求出长、宽、高分别占长宽高和的几分之几,根据一个数乘分数的意义,用乘法求出长、宽、高,再根据长方体的体积=长×宽×高,把数据代入公式解答.
【解答】解:3+4+5=12,
96÷4=24(厘米),
24×,
,
24×(厘米),
10×8×6=480(立方厘米),
答:这个长方体的体积是480立方厘米.
【点评】此题主要考查长方体的棱长总和公式、体积公式的灵活运用,关键是利用按比例分配的方法求出长、宽、高.
30.(2分)一套学生专用课桌椅售价220元,其中桌子的价格比椅子贵,一张桌子售价多少元?
【分析】已知桌子的价格比椅子贵,把椅子的价格看作单位“1”,那么桌子的价格是椅子价格的(1),由此可知:一套学生专用课桌椅售价相当于椅子价格的(1),根据已知一个数的几分之几是多少,求这个数,用除法椅子的价格,进而求出桌子的价格.
【解答】解:220×
=
=
=128(元)
答:一张桌子的售价是128元.
【点评】这种类型的题目属于稍复杂的分数乘除应用题,只要找清单位“1”,利用基本数量关系解决问题.
31.(3分)全班一共有38人,共租了8条船,每条船都坐满了.其中大船限坐6人,小船限坐4人,大船和小船各租了多少条?
【分析】假设8条全是租的大船,则一共可以坐下8×6=48人,这比已知的38人多出了48﹣38=10人的空座,因为1条大船比1条小船多坐6﹣4=2人,所以小船一共有10÷2=5条,则大船一共有8﹣5=3条,据此即可解答.
【解答】解:假设8条全是租的大船,则小船有:(8×6﹣38)÷(6﹣4)
=10÷2
=5(条)
则大船有:8﹣5=3(条)
答:大船有3条,小船有5条.
【点评】此题属于鸡兔同笼问题,可以直接采用假设法解答;也可以看做含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.
32.(3分)修路对修一条路,第一天修理40%,第二天修理余下的20%,还剩480米,这段路一共有多少米?
【分析】运用逆推法,先把第一天修后剩下的长度看成单位“1”,那么最后剩下的长度就是它的(1﹣20%),它对应的数量是480米,由此用除法求出第一天修后剩下的长度;再把全长看成单位“1”,第一天修后剩下的长度就是全长的(1﹣40%),由此再用除法求出全长.
【解答】解:480÷(1﹣20%)
=480÷80%
=600(米)
600÷(1﹣40%)
=600÷60%
=1000(米)
答:这段路一共1000米.
【点评】解答此题的关键是分清两个单位“1”的区别,已知单位“1”的百分之几是多少,求单位“1”用除法求解.
33.(2分)小王和小张同时打一份稿件,5小时打了这份这稿件的.如果由小王单独打,10小时可以打完.求如果由小张单独打,几小时可以打完.(湖北当阳市)
【分析】“求由小张单独打,几小时可以打完”,就要知道小张的工作效率.由题意可求出小王和小张的工作效率之和是5=,小王的工作效率是,所以小张的工作效率为=.故小张单独打,(1÷)小时可以打完.
【解答】解:1÷(5﹣),
=1÷(),
=1,
=15(小时).
答:15小时可以打完.
【点评】此题重点考查学生对工程问题中三个数量之间的关系的理解.
34.(2分)一件工作,甲单独做需要12天,乙的工作效率是甲的,两个合做,几天能完成这件工作的?
【分析】一件工作,甲单独做需要12天,则甲的工作效率为,乙的工作效率则是×,用这件工作的除以甲乙的工作效率之和,即可得几天能完成这件工作的.
【解答】解:÷(+×)
=÷
=5(天)
答:两个合做,5天能完成这件工作的.
【点评】工作时间等于工作量除以工作效率,分析题干,理顺数量关系解答即可.
35.(2分)一辆客车到达车站后有的乘客下车,又上车12人,这时车上的乘客比原来多5%,车上现在有多少人?
【分析】根据题意,把客车上原来的人数看作单位“1”,客车到达车站后有的乘客下车,又上车12人,这时车上的乘客比原来多5%,由此可知:又上车的12人占原来的(5%),根据已知一个数的几分之几是多少,求这个数,用除法求出原来的人数,这时车上的乘客比原来多5%,再根据一个数乘百分数的意义,用乘法解答.
【解答】解:12÷(5%)×(1+5%)
=12÷()×1.05
=121.05
=×1.05
=40×1.05
=42(人),
答:车上现在有42人.
【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.
36.(2分)客车和货车同时从甲乙两地相向而行,4小时后,客车到达中点,货车离中点还有60千米.已知客车和货车的速度比是3:2,求甲乙两地相距多少千米?
【分析】先依据速度=路程÷时间,求出客车比货车快的速度,再把客车速度看作单位“1”,求出客车比货车快的速度占的分率,然后依据分数除法意义,求出客车速度,依据路程=速度×时间,求出客车4小时行驶的路程,最后乘2即可解答.
【解答】解:60÷4÷(1﹣)
=15÷
=45(千米)
45×4×2
=180×2
=360(千米)
答:甲乙两地相距360千米.
【点评】解答本题的关键是依据分数除法意义求出客车的速度.
37.(2分)在长跑训练中,小文跑了2000米,小丽跑的路程相当于小文的,小华跑的路程等于小丽的,小华跑了多少米?
【分析】先把小文跑的距离看作单位“1”,用2000乘求出小丽跑的距离,再把小丽跑的距离看作单位“1”,用2000乘再乘求出小华跑的距离.
【解答】解:2000××
=1500×
=1000(米)
答:小华跑了1000米.
【点评】本题考查了分数连乘应用题,知识点:求单位“1”的几分之几是多少用乘法.
38.(3分)某个体户,去年12月份营业收入5000元,按规定要缴纳3%的营业税.纳税后还剩多少钱?
【分析】按规定要缴纳3%的营业税,即税额占收入的3%,根据一个数乘百分数的意义,求出税额,用收入减去税额即可.
【解答】解:5000﹣5000×3%
=5000﹣5000×0.03
=5000﹣150
=4850(元)
或5000×(1﹣3%)
=5000×0.97
=4850(元)
答:纳税后还剩4850元.
【点评】此题主要根据一个数乘百分数的意义解决问题.
第28页(共28页)
展开阅读全文