资源描述
第一章 数与式
课时1.实数的有关概念
【考点链接】
一、有理数的意义
1.数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.
2.实数的相反数为________. 若,互为相反数,则= .
3.非零实数的倒数为______. 若,互为倒数,则= .
4.绝对值
在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。即一个正数的绝对值等于它 ;0的绝对值是 ;负数的绝对值是它的 。
a ( a>0 )
即│a│= 0 ( a=0 )
-a ( a<0 )
5.科学记数法:把一个(绝对值大于10或绝对值小于1)的数表示成 的形式,其中1≤<10的数,n是整数.
6.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从
左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.
二、实数的分类
1.按定义分类
正整数
整数 零 自然数
有理数 负整数
正分数
分数 有限小数或无限循环小数
实数 负分数
正无理数
无理数 无限不循环小数
负无理数
2.按正负分类
正整数
正有理数
正实数 正分数
正无理数
实数 零(既不是正数也不是负数)
负整数
负有理数
负实数 负分数
负无理数
练习题
1.的倒数是( )
A. B. C. D.
2.若互为相反数,则 .
3.若m、n互为倒数,则的值为 .
4.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 .
A
0
图7
B
C
D
5. 的相反数是 .
6.如图7,矩形ABCD的顶点A,B在数轴上, CD = 6,点A对应的数为,则点B所对应的数为 .
课时2. 实数的运算与大小比较
【考点链接】
一、实数的运算
1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。
2. 数的乘方 ,其中叫做 ,n叫做 .
3. (其中 0 且是 ) (其中 0)
4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算
里面的,同一级运算按照从 到 的顺序依次进行.
二、实数的大小比较
1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.
2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.
3.实数大小比较的特殊方法
⑴设a、b是任意两个数,若a-b>0,则a b;若a-b=0,则a b,若a-b<0,则
a b.
⑵平方法:如3>2,则 ;
⑶商比较法:已知a>0、b>0,若>1,则a b;若=1,则a b;若<1,则a b.
⑷近似估算法
⑸找中间值法
4.n个非负数的和为0,则这n个非负数同时为0.
例如:若++=0,则a=b=c=0.
练习题
1.比较大小:-6 -8.(填“<”、“=”或“>”)
2. 等于( )
A.-1 B.1 C.-3 D.3
3.计算3×(2) 的结果是
A.5 B.5 C.6 D.6
课时3.整式及其运算
【考点链接】
1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.
2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值.
3. 整式
(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或字母 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的
叫做这个单项式的次数.
(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .
(3) 整式: 与 统称整式.
4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 相加,所得的结果作为合并后的系数,字母和字母的指数 。
5. 幂的运算性质: am·an= ; (am)n= ; am÷an=_____; (ab)n= .
6. 乘法公式:
(1) ; (2)(a+b)(a-b)= ;
(3) (a+b)2= ;(4)(a-b)2= .
7. 整式的除法
⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .
练习题
1. 计算的结果是( )
A. B. C. D.
2.下列运算中,正确的是( )
A. B.
C. D.
3.下列计算中,正确的是
A. B. C. D.
课时4.因式分解
【考点链接】
1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.
2. 因式分解的方法:⑴ ,⑵ ,
⑶ ,⑷ .
3. 提公因式法:__________ _________.
4. 公式法: ⑴ ⑵ ,
⑶ .
5. 十字相乘法: .
6.因式分解的一般步骤:一“提”(取公因式),二“套”(公式).
7.易错知识辨析
(1)注意因式分解与整式乘法的区别;
(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.
课时5.分式
【考点链接】
1. 分式:整式A除以整式B,可以表示成 的形式,如果除式B中含有 ,那么称 为分式.若 ,则 有意义;若 ,则 无意义;若 ,则 =0.
2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .
3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.
4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.
5.约分的关键是确定分式的分子与分母的 ;通分的关键是确定n个分式的
。
6.分式的运算(用字母表示)
⑴ 加减法法则:① 同分母的分式相加减: .
② 异分母的分式相加减: .
⑵ 乘法法则: .乘方法则: .
⑶ 除法法则: .
练习题
1.当 时,分式无意义.
2.已知,求的值.
3.已知a = 2,,求÷的值.
4.化简的结果是
A. B. C. D.1
课时6.二次根式
【考点链接】
一、平方根、算术平方根、立方根
1.若x2=a(a 0),则x叫做a的 ,记作±; 叫做算数平方根,记作 。
2.平方根有以下性质:
①正数有两个平方根,他们互为 ;
②0的平方根是0;
③负数没有平方根。
3.如果x3=a,那么x叫做a的立方根,记作。
二、二次根式
1.二次根式的有关概念
⑴ 式子 叫做二次根式.注意被开方数只能是 .
⑵ 简二次根式
被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式.
(3) 同类二次根式
化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.
2.二次根式的性质
⑴ 0(a≥0);
⑵ (≥0) ⑶ ;
⑷ (a≥0, b≥0); ⑸ (a≥0,b>0).
3.二次根式的运算
(1) 二次根式的加减:
①先把各个二次根式化成 ;
②再把 分别合并,合并时,仅合并 ,
不变.
(2) 二次根式的乘除法
二次根式的运算结果一定要化成 。
练习题
1.在实数范围内,有意义,则x的取值范围是( )
A.x ≥0 B.x ≤0 C.x >0 D.x <0
第二章 方程(组)与不等式(组)
课时7.一次方程及方程组
【考点链接】
一、等式与方程的有关概念
1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.
⑵ 性质:① 如果,那么 ;
② 如果,那么 ;
如果,那么 .
2. 方程、一元一次方程的概念
⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程
的解;求方程解的 叫做解方程. 方程的解与解方程不同.
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系
数不等于0的方程叫做一元一次方程;它的一般形式为 .
3. 解一元一次方程的步骤:
①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.
二、二元一次方程(组)及解法
1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.
2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.
3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.
4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解.
5. 解二元一次方程的方法步骤:
消元
转化
二元一次方程组 方程.
消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.
6.易错知识辨析:
(1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘
以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏
乘没有分母的项;③解方程时一定要注意“移项”要变号.
(2)二元一次方程有无数个解,它的解是一组未知数的值;
(3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;
(4)利用加减法消元时,一定注意要各项系数的符号.
练习题
巧克力
果冻
50g砝码
图8
1.图8所示的两架天平保持平衡,且每块
巧克力的质量相等,每个果冻的质量也相等,则一块
巧克力的质量是 g.
2.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是
A. B.
C. D.
课时8.一元二次方程及其应用
【考点链接】
1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.
2. 一元二次方程的常用解法:
(1)直接开平方法:形如或的一元二次方程,就可用
直接开平方的方法.
(2)配方法:用配方法解一元二次方程的一般步骤是:①化二
次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,
右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为
的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.
如果n<0,则原方程无解.
(3)公式法:一元二次方程的求根公式是
.
(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.
3. 一元二次方程根的判别式:
关于x的一元二次方程的根的判别式为 .
(1)>0一元二次方程有两个 实数根,即 .
(2)=0一元二次方程有 相等的实数根,即 .
(3)<0一元二次方程 实数根.
4.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
练习题
1.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是( )
A. B.
C. D.
2.已知x = 1是一元二次方程的一个根,则 的值为 .
课时9.分式方程及其应用
【考点链接】
1.分式方程:分母中含有 的方程叫分式方程.
2.解分式方程的一般步骤:
(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;
(2)解这个整式方程;
(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
3. 用换元法解分式方程的一般步骤:
① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.
4.分式方程的应用:
分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:
(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .
5.列分式方程解应用题中常用的数量关系及题型
(1)数字问题(包括日历中的数字规律)
①设个位数字为c,十位数字为b,百位数字为a,则这个三位数是 ;
②日历中前后两日差 ,上下两日差 。
(2)体积变化问题。
(3)打折销售问题
①利润= -成本; ②利润率= ×100%.
(4)行程问题。
(5)教育储蓄问题
①利息= ; ②本息和= =本金×(1+利率×期数);
③利息税= ; ④贷款利息=贷款数额×利率×期数。
6.易错知识辨析:
(1) 去分母时,不要漏乘没有分母的项. (2) 解分式方程的重要步骤是检验。
练习题
1.解方程:.
课时10.一元一次不等式(组)
【考点链接】
1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.
2.不等式的基本性质:
(1)若<,则+ ;
(2)若>,>0则 (或 );
(3)若>,<0则 (或 ).
3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.
4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.
一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.
5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)
的解集是,即“小小取小”;的解集是,即“大大取大”;
的解集是,即“大小小大中间找”;
的解集是空集,即“大大小小取不了”.
6.求不等式(组)的特殊解:
不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.
7.易错知识辨析:
(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.
(2)解字母系数的不等式时要讨论字母系数的正、负情况.
如不等式(或)()的形式的解集:
当时,(或)
当时,(或)
练习题
1.把某不等式组中两个不等式的解集表示在数轴上,如图1所示,
则这个不等式组可能是( )
4
0
图1
A. B. C. D.
2.把不等式< 4的解集表示在数轴上,正确的是( )
A
-2
0
B
D
2
0
C
0
-2
2
0
第三章 函数及其图像
课时11. 平面直角坐标系与函数的概念
【考点链接】
1. 坐标平面内的点与______________一一对应.
2. 根据点所在位置填表(图)
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限
3. 轴上的点______坐标为0, 轴上的点______坐标为0.
4.各象限角平分线上的点的坐标特征
⑴第一、三象限角平分线上的点,横、纵坐标 。
⑵第二、四象限角平分线上的点,横、纵坐标 。
5. P(x,y)关于轴对称的点坐标为__________,关于轴对称的点坐标为________,
关于原点对称的点坐标为___________.
以上特征可归纳为:
⑴关于x轴对称的两点:横坐标相同,纵坐标 ;
⑵关于y轴对称的两点:横坐标 ,纵坐标相同;
⑶关于原点对称的两点:横、纵坐标均 。
6. 描点法画函数图象的一般步骤是__________、__________、__________.
7. 函数的三种表示方法分别是__________、__________、__________.
8. 求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义。
⑴自变量以整式形式出现,它的取值范围是 ;
⑵自变量以分式形式出现,它的取值范围是 ;
⑶自变量以根式形式出现,它的取值范围是 ;
例如:有意义,则自变量x的取值范围是 .
有意义,则自变量的取值范围是 。
练习题
取相反数
×2
+4
图6
输入x
输出y
1.如图6所示的计算程序中,y与x之间的函数关系
所对应的图象应为( )
O
y
x
-2
- 4
A
D
C
B
O
4
2
y
O
2
- 4
y
x
O
4
- 2
y
x
x
3.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是( )
t
s
O
A
t
s
O
B
t
s
O
C
t
s
O
D
课时12. 一次函数
【考点链接】
1.正比例函数的一般形式是__________.一次函数的一般形式是__________________.
2. 一次函数的图象是经过 和 两点的一条 .
3. 求一次函数的解析式的方法是 ,其基本步骤是:⑴ ;
⑵ ; ⑶ ;⑷ .
4.一次函数的图象与性质
k、b的符号
k>0b>0
k>0 b<0
k<0 b>0
k<0b<0
图像的大致位置
经过象限
第 象限
第 象限
第 象限
第 象限
性质
y随x的增大
而
y随x的增大而
y随x的增大而
y随x的增大而
5. 一次函数的性质
k>0直线上升y随x的增大而 ;
k<0直线下降y随x的增大而 .
练习题
1. l1
l2
x
y
D
O
3
B
C
A
(4,0)
图11
如图11,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.
(1)求点的坐标;
(2)求直线的解析表达式;
(3)求的面积;
(4)在直线上存在异于点的另一点,使得
与的面积相等,请直接写出点的坐标.
2.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)
裁法一
裁法二
图15
60
40
40
150
30
单位:cm
A
B
B
裁法三
A型板材块数
1
2
0
B型板材块数
2
m
n
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y
张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m = ,n = ;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,
并指出当x取何值时Q最小,此时按三种裁法各裁标准板材
多少张?
课时13.反比例函数
【考点链接】
1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=
或 (k为常数,k≠0)的形式,那么称y是x的反比例函数.
2. 反比例函数的图象和性质
k的符号
k>0
y
x
o
k<0
图像的大致位置
o
y
x
经过象限
第 象限
第 象限
性质
在每一象限内y随x的增大而
在每一象限内y随x的增大而
3.的几何含义:反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y= (k≠0)上任意一点P作x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB的面积为 .
练习题
1.点在反比例函数的图象上,则 .
x
y
O
图3
2.反比例函数(x>0)的图象如图3所示,
随着x值的增大,y值( )
A.增大 B.减小
C.不变 D.先减小后增大
3.如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
x
M
N
y
D
A
B
C
E
O
图13
(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
课时14.二次函数及其图像
【考点链接】
1. 二次函数的图像和性质
>0
y
x
O
<0
图 象
开 口
对 称 轴
最 值
当x= 时,y有最 值
当x= 时,y有最 值
增
减
性
在对称轴左侧
y随x的增大而
y 随x的增大而
在对称轴右侧
y随x的增大而
y随x的增大而
2. 二次函数用配方法可化成的形式,其中
= ,= .
3. 二次函数的图像和图像的关系.
4. 常用二次函数的解析式:(1)一般式: ;(2)顶点式: 。
5. 顶点式的几种特殊形式.
⑴ , ⑵ , ⑶ ,(4) .
6.二次函数通过配方可得,其抛物线关于直线 对称,顶点坐标为( , ).
⑴ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
时,有最 (“大”或“小”)值是 ;
⑵ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
时,有最 (“大”或“小”)值是 .
练习题
A
O
P
x
y
图12
- 3
- 3
1.已知抛物线经过点和点P (t,0),且t ≠ 0.
(1)若该抛物线的对称轴经过点A,如图12,
请通过观察图象,指出此时y的最小值,
并写出t的值;
(2)若,求a、b的值,并指出此时抛
物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
O
x
y
A
图5
x = 2
B
2.如图5,已知抛物线的对称
轴为,点A,B均在抛物线上,且AB与x轴平行,其
中点A的坐标为(0,3),则点B的坐标为( )
A.(2,3) B.(3,2)
C.(3,3) D.(4,3)
课时15.函数的综合应用
【考点链接】
1.点A在函数的图像上.则有 .
2. 求函数与轴的交点横坐标,即令 ,解方程 ;
与y轴的交点纵坐标,即令 ,求y值
3. 求一次函数的图像与二次函数的图像的交点,解方程组 .
4.二次函数通过配方可得,
⑴ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
时,有最 (“大”或“小”)值是 ;
⑵ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
时,有最 (“大”或“小”)值是 .
5. 每件商品的利润P = - ;商品的总利润Q = × .
6. 函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
7. 二次函数的图像特征与及的符号的确定.
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点, 它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。
注意:当x=1时,y=a+b+c;当x=-1时,y=a-b+c。若a+b+c>0,即x=1时,y>0;
若a-b+c>0,即x=-1时,y>0。
8.函数的综合应用
⑴利用一次函数图像解决求一次方程、一次不等式的解、比较大小等问题。
⑵利用二次函数图像、反比例函数图像解决求二次方程、分式方程、分式不等式的解、比
较大小等问题。
⑶利用数形结合的思路,借助函数的图像和性质,形象直观的解决有关不等式最大(小)值、方程的解以及图形的位置关系等问题。
⑷利用转化的思想,通过一元二次方程根的判别式来解决抛物线与x轴交点的问题。
⑸通过几何图形和几何知识建立函数模型,提供设计方案或讨论方案的可行性。
⑹建立函数模型后,往往涉及方程、不等式、相似等知识,最后必须检验与实际情况是否相符合。
⑺综合运用函数只是,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,要想到运用二次函数。
1.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;
(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线的顶点坐标是.
2.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线的顶点坐标是.
第四章 统计与概率
课时16. 统计
【考点链接】
1.普查与抽样调查
⑴为一特定目的而对 考察对象作的全面调查叫普查,
展开阅读全文