资源描述
锐角三角函数提高题与常考题和培优题(含解析)
一.选择题(共11小题)
1.如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值( )
A.扩大为原来的3被 B.缩小为原来的
C.没有变化 D.不能确定
2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是( )
A. B. C. D.
3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于( )
A. B.2sinα C. D.2cosα
4.如果锐角α的正弦值为,那么下列结论中正确的是( )
A.α=30° B.α=45° C.30°<α<45° D.45°<α<60°
5.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB的值为( )
A. B. C. D.3
6.在Rt△ABC中,各边都扩大3倍,则角A的正弦值( )
A.扩大3倍 B.缩小3倍 C.不变 D.不能确定
7.如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
A.3km B.3km C.4 km D.(3﹣3)km
8.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为( )
A. B.2 C. D.3
9.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A.2 B. C. D.
10.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( )
A. B. C. D.
11.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变 B.增大 C.减小 D.先变大再变小
二.填空题(共12小题)
12.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于 .
13.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA= .
14.如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是 .
15.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是 米.
16.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值= ,tan∠APD的值= .
17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= .
18.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为 .
19.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为 m(结果保留根号).
20.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是 .
21.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为 .
22.已知cosα=,则的值等于 .
23.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β) tanα+tanβ.(填“>”“=”“<”)
三.解答题(共17小题)
24.计算:cos245°+﹣•tan30°.
25.计算:2cos230°﹣sin30°+.
26.如图,在△ABC中,∠C=150°,AC=4,tanB=.
(1)求BC的长;
(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)
27.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.
(1)若∠A=60°,求BC的长;
(2)若sinA=,求AD的长.
(注意:本题中的计算过程和结果均保留根号)
28.如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.
29.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.
30.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.
31.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值.
32.如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)
33.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,BC=10,试求CD的长.
34.已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:
(1)AB的长;
(2)∠CAB的余切值.
35.数学老师布置了这样一个问題:
如果α,β都为锐角.且tanα=,tanβ=.求α+β的度数.
甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.
(1)请你分别利用图1,图2求出α+β的度数,并说明理由;
(2)请参考以上思考问题的方法,选择一种方法解决下面问题:
如果α,β都为锐角,当tanα=5,tanβ=时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明理由.
36.如图,点P、M、Q在半径为1的⊙O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:
(1)sin60°= ;cos75°= ;
(2)若MH⊥x轴,垂足为H,MH交OP于点N,求MN的长.(结果精确到0.01,参考数据:≈1.414,≈1.732)
37.阅读下面的材料:某数学学习小组遇到这样一个问题:
如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.
该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC.
(1)观察图象可知:α+β= °;
(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tanα=3,tanβ=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON的度数.
38.阅读下列材料:
在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt△ABC中,∠ACB=90°,AB=1,∠A=α,求sin2α(用含sinα,cosα的式子表示).
聪明的小雯同学是这样考虑的:如图2,取AB的中点O,连接OC,过点C作CD⊥AB于点D,则∠COB=2α,然后利用锐角三角函数在Rt△ABC中表示出AC,BC,在Rt△ACD中表示出CD,则可以求出
sin2α====2sinα•cosα.
阅读以上内容,回答下列问题:
在Rt△ABC中,∠C=90°,AB=1.
(1)如图3,若BC=,则 sinα= ,sin2α= ;
(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sinα,cosα的式子表示).
39.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
(1)求AB的长(精确到0.01米);
(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)
40.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)
锐角三角函数常考题型与解析
参考答案与试题解析
一.选择题(共11小题)
1.(2017•奉贤区一模)如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值( )
A.扩大为原来的3被 B.缩小为原来的
C.没有变化 D.不能确定
【分析】根据△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,得到锐角A的大小没改变和余切的概念解答.
【解答】解:因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,
所以锐角A的大小没改变,所以锐角A的余切值也不变.
故选:C.
【点评】本题考查了锐角三角函数的定义,掌握在直角三角形中,一个锐角的余切等于它的邻边与对边的比值是解题的关键.
2.(2017•金山区一模)在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是( )
A. B. C. D.
【分析】根据sinA=代入数据直接得出答案.
【解答】解:∵∠C=90°,AB=5,BC=4,
∴sinA==,
故选D.
【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
3.(2017•浦东新区一模)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于( )
A. B.2sinα C. D.2cosα
【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.
【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,
∴sinA=,
∴AB==,
故选A.
【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.
4.(2017•静安区一模)如果锐角α的正弦值为,那么下列结论中正确的是( )
A.α=30° B.α=45° C.30°<α<45° D.45°<α<60°
【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.
【解答】解:由<<,得
30°<α<45°,
故选:C.
【点评】本题考查了锐角三角形的增减性,当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).也考查了互余两角的三角函数之间的关系.
5.(2017•莒县模拟)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB的值为( )
A. B. C. D.3
【分析】根据勾股定理即可求出AC、BC、DE、DF的长度,然后证明△FDE∽△ABC,所以
【解答】解:由勾股定理 可求出:BC=2,AC=2,DF=,DE=,
∴,,,
∴,
∴△FDE∽△CAB,
∴∠DFE=∠ACB,
∴tan∠DFE=tan∠ACB=,
故选(B)
【点评】本题考查解直角三角形,涉及勾股定理,相似三角形的判定与性质.
6.(2017春•兰陵县校级月考)在Rt△ABC中,各边都扩大3倍,则角A的正弦值( )
A.扩大3倍 B.缩小3倍 C.不变 D.不能确定
【分析】根据锐角三角函数的定义,可得答案.
【解答】解:由题意,得
Rt△ABC中,各边都扩大3倍,则角A的正弦值不变,
故选:C.
【点评】本题考查了锐角三角函数的定义,利用锐角三角函数的定义是解题关键.
7.(2017•兴化市校级一模)如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
A.3km B.3km C.4 km D.(3﹣3)km
【分析】根据题意,可以作辅助线AC⊥OB于点C,然后根据题目中的条件,可以求得AC和BC的长度,然后根据勾股定理即可求得AB的长.
【解答】解:作AC⊥OB于点C,如右图所示,
由已知可得,
∠COA=30°,OA=6km,
∵AC⊥OB,
∴∠OCA=∠BCA=90°,
∴OA=2AC,∠OAC=60°,
∴AC=3km,∠CAD=30°,
∵∠DAB=15°,
∴∠CAB=45°,
∴∠CAB=∠B=45°,
∴BC=AC,
∴AB=,
故选A.
【点评】本题考查解直角三角形的应用﹣方向角问题,解答此类问题的关键是明确题意,利用在直角三角形中30°所对的边与斜边的关系和勾股定理解答.
8.(2017春•萧山区月考)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为( )
A. B.2 C. D.3
【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.
【解答】解:如图,连接OA,过点A作AC⊥OB于点C,
则AC=1,OA=OB=2,
∵在Rt△AOC中,OC===,
∴BC=OB﹣OC=2﹣,
∴在Rt△ABC中,tan∠ABO===2+,
故选:C.
【点评】本题主要考查解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.
9.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A.2 B. C. D.
【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.
【解答】解:如图:,
由勾股定理,得
AC=,AB=2,BC=,
∴△ABC为直角三角形,
∴tan∠B==,
故选:D.
【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.
10.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( )
A. B. C. D.
【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.
【解答】解:∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD==5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴sin∠OBD=sin∠OCD==.
故选:D.
【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.
11.(2016•娄底)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变 B.增大 C.减小 D.先变大再变小
【分析】设CD=a,DB=b,∠DCF=∠DBE=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.
【解答】解:∵BE⊥AD于E,CF⊥AD于F,
∴CF∥BE,
∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DBE=α,
∴CF=DC•cosα,BE=DB•cosα,
∴BE+CF=(DB+DC)cosα=BC•cosα,
∵∠ABC=90°,
∴O<α<90°,
当点D从B→D运动时,α是逐渐增大的,
∴cosα的值是逐渐减小的,
∴BE+CF=BC•cosα的值是逐渐减小的.
故选C.
【点评】本题考查三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,得到BE+CF=BC•cosα,记住三角函数的增减性是解题的关键,属于中考常考题型.
二.填空题(共12小题)
12.(2017•普陀区一模)如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于 .
【分析】如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,在Rt△AEC中,根据cos∠C===,即可解决问题.
【解答】解:如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,
,
在Rt△AEC中,cos∠C===,
故答案为.
【点评】本题考查等腰三角形的性质,解直角三角形锐角三角函数等知识,解题的关键是熟练掌握所学知识,掌握等腰三角形中的常用辅助线,属于中考常考题型.
13.(2017•宝山区一模)如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA= .
【分析】先证明△BDC∽△CDA,利用相似三角形的性质求出CD的长度,然后根据锐角三角函数的定义即可求出tanA的值.
【解答】解:∵∠BCD+∠DCA=∠DCA+∠A=90°,
∴∠BCD=∠A,
∵CD⊥AB,
∴∠BDC=∠CDA=90°,
∴△BDC∽△CDA,
∴CD2=BD•AD,
∴CD=6,
∴tanA==
故答案为:
【点评】本题考查解直角三角形,涉及锐角三角函数,相似三角形的判定与性质.
14.(2017•青浦区一模)如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是 .
【分析】由DE垂直平分AB,得到AD=BD,设CD=x,则有BD=AD=3﹣x,在直角三角形BCD中,利用勾股定理求出x的值,确定出CD的长,利用锐角三角函数定义求出所求即可.
【解答】解:∵边AB的垂直平分线交AC边于点D,交AB边于点E,
∴AD=BD,
设CD=x,则有BD=AD=AC﹣CD=3﹣x,
在Rt△BCD中,根据勾股定理得:(3﹣x)2=x2+22,
解得:x=,
则tan∠DBC==,
故答案为:
【点评】此题考查了解直角三角形,以及线段垂直平分线性质,熟练掌握性质及定理是解本题的关键.
15.(2017•黄浦区一模)如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是 27 米.
【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.
【解答】解:作PE⊥AB于点E,
在直角△AEP中,∠APE=∠α,
则AE=PE•tan∠APE=30×0.45=13.5(米),
则AB=2AE=27(米).
故答案是:27.
【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.
16.(2016•自贡)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值= 3 ,tan∠APD的值= 2 .
【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
【解答】解:∵四边形BCED是正方形,
∴DB∥AC,
∴△DBP∽△CAP,
∴==3,
连接BE,
∵四边形BCED是正方形,
∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
∴BF=CF,
根据题意得:AC∥BD,
∴△ACP∽△BDP,
∴DP:CP=BD:AC=1:3,
∴DP:DF=1:2,
∴DP=PF=CF=BF,
在Rt△PBF中,tan∠BPF==2,
∵∠APD=∠BPF,
∴tan∠APD=2,
故答案为:3,2.
【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.
17.(2016•枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= 2 .
【分析】连接BC可得RT△ACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答案.
【解答】解:如图,连接BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB=6,AC=2,
∴BC===4,
又∵∠D=∠A,
∴tanD=tanA===2.
故答案为:2.
【点评】本题考查了三角函数的定义、圆周角定理、解直角三角形,连接BC构造直角三角形是解题的关键.
18.(2016•舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为 4 .
【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时(QC⊥AB,C为垂足),点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,
∴AB=2,BO==,
①当点P从O→B时,如图1、图2所示,点Q运动的路程为,
②如图3所示,QC⊥AB,则∠ACQ=90°,即PQ运动到与AB垂直时,垂足为P,
当点P从B→C时,
∵∠ABO=30°
∴∠BAO=60°
∴∠OQD=90°﹣60°=30°
∴cos30°=
∴AQ==2
∴OQ=2﹣1=1
则点Q运动的路程为QO=1,
③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
④当点P从A→O时,点Q运动的路程为AO=1,
∴点Q运动的总路程为:+1+2﹣+1=4
故答案为:4
【点评】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.
19.(2016•新疆)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为 30 m(结果保留根号).
【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.
【解答】解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=30 (m).
故答案为:30 .
【点评】本题考查的是解直角三角形的应用﹣方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.
20.(2016•港南区二模)如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是 .
【分析】首先连接AB,由勾股定理易求得OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,然后由勾股定理的逆定理,可证得△AOB是等腰直角三角形,继而可求得cos∠AOB的值.
【解答】解:连接AB,
∵OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,
∴OA2+AB2=OB2,OA=AB,
∴△AOB是等腰直角三角形,即∠OAB=90°,
∴∠AOB=45°,
∴cos∠AOB=cos45°=.
故答案为:.
【点评】此题考查了锐角三角函数的定义、勾股定理以及勾股定理的逆定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
21.(2016•于田县校级模拟)如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为 .
【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.
【解答】解:∵P(12,a)在反比例函数图象上,
∴a==5,
∵PH⊥x轴于H,
∴PH=5,OH=12,
∴tan∠POH=,
故答案为:.
【点评】此题主要考查了反比例函数图象上点的坐标特征,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
22.(2016•雅安校级模拟)已知cosα=,则的值等于 0 .
【分析】先利用tanα=得到原式==,然后把cosα=代入计算即可.
【解答】解:∵tanα=,
∴==,
∵cosα=,
∴==0.
故答案为0.
【点评】本题考查了同角三角函数的关系:平方关系:sin2A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或sinA=tanA•cosA.
23.(2016•鞍山二模)如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β) > tanα+tanβ.(填“>”“=”“<”)
【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.
【解答】解:由正方形网格图可知,tanα=,tanβ=,
则tanα+tanβ=+=,
∵AC=BC,∠ACB=90°,
∴α+β=45°,
∴tan(α+β)=1,
∴tan(α+β)>tanα+tanβ,
故答案为:>.
【点评】本题考查的是特殊角的三角函数值、锐角三角函数的定义以及等腰直角三角形的性质,熟记特殊角的三角函数值、正确理解锐角三角函数的定义是解题的关键.
三.解答题(共17小题)
24.(2017•普陀区一模)计算:cos245°+﹣•tan30°.
【分析】根据特殊角三角函数值,可得答案.
【解答】解:原式=()2+﹣×
=+﹣1
=.
【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
25.(2017•浦东新区一模)计算:2cos230°﹣sin30°+.
【分析】根据特殊角三角函数值,可得答案.
【解答】解:原式=2×()2﹣+
=1++.
【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
26.(2016•连云港)如图,在△ABC中,∠C=150°,AC=4,tanB=.
(1)求BC的长;
(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)
【分析】(1)过A作AD⊥BC,交BC的延长线于点D,由含30°的直角三角形性质得AD=AC=2,由三角函数求出CD=2,在Rt△ABD中,由三角函数求出BD=16,即可得出结果;
(2)在BC边上取一点M,使得CM=AC,连接AM,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=即可得出结果.
【解答】解:(1)过A作AD⊥BC,交BC的延长线于点D,如图1所示:
在Rt△ADC中,AC=4,
∵∠C=150°,
∴∠ACD=30°,
∴AD=AC=2,
CD=AC•cos30°=4×=2,
在Rt△ABD中,tanB===,
∴BD=16,
∴BC=BD﹣CD=16﹣2;
(2)在BC边上取一点M,使得CM=AC,连接AM,如图2所示:
∵∠ACB=150°,
∴∠AMC=∠MAC=15°,
tan15°=tan∠AMD====2﹣≈0.27≈0.3.
【点评】本题考查了锐角三角函数、含30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;熟练掌握三角函数运算是解决问题的关键.
27.(2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.
(1)若∠A=60°,求BC的长;
(2)若sinA=,求AD的长.
(注意:本题中的计算过程和结果均保留根号)
【分析】(1)要求BC的长,只要求出BE和CE的长即可,由题意可以得到BE和CE的长,本题得以解决;
(2)要求AD的长,只要求出AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.
【解答】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,
∴∠E=30°,BE=tan60°•6=6,
又∵∠CDE=90°,CD=4,sinE=,∠E=30°,
∴CE==8,
∴BC=BE﹣CE=6﹣8;
(2))∵∠ABE=90°,AB=6,sinA==,
∴设BE=4x,则AE=5x,得AB=3x,
∴3x=6,得x=2,
∴BE=8,AE=10,
∴tanE====,
解得,DE=,
∴AD=AE﹣DE=10﹣=,
即AD的长是.
【点评】本题考查解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.
28.(2016•厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.
【分析】过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=,根据勾股定理得到结论.
【解答】解:过D作DE⊥BC交BC的延长线于E,
则∠E=90°,
∵sin∠DBC=,BD=,
∴DE=2,
∵CD=3,
∴CE=1,BE=4,
∴BC=3,
∴BC=CD,
∴∠CBD=∠CDB,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠CDB,
∴AB∥CD,
同理AD∥BC,
∴四边形ABCD是菱形,
连接AC交BD于O,
则AC⊥BD,AO=CO,BO=DO=,
∴OC==,
∴AC=2.
【点评】本题考查了菱形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.
29.(2016•上海)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.
【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;
(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.
【解答】解:(1)∵AD=2CD,AC=3,
∴AD=2,
∵在Rt△ABC中,∠ACB=90°,AC=BC=3,
∴∠A=∠B=45°,AB===3,
∵DE⊥AB,
∴∠AED=90°,∠ADE=∠A=45°,
∴AE=AD•cos45°=2×=,
∴BE=AB﹣AE=3﹣=2,
即线段BE的长为2;
(2)过点E作EH⊥BC,垂足为点H,如图所示:
∵在Rt△BEH中,∠EHB=90°,∠B=45°,
∴EH=BH=BE•cos45°=2×=2,
∵BC=3,
∴CH=1,
在Rt△CHE中,cot∠ECB==,
即∠ECB的余切值为.
【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.
30.(2016•厦门校级模拟)如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.
【分析】依题意设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,先证明△CEM是直角三角形,再利用三角函数的定义求解.
【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,
∴EC==5x,
EM==x,
CM==2x,
∴EM2+CM2=CE2,
∴△CEM是直角三角形,
∴sin∠ECM==.
【点评】本题考查了锐角三角函数值的求法.关键是利用勾股定理的逆定理证明直角三角形,把问题转化到直角三角形中求解.
31.(2016•江西模拟)如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值.
【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;
(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.
【解答】解:(1)在△ABC中,∵∠ACB=90°,
∴sinA==,
而BC=8,
∴AB=10,
∵D是AB中点,
∴CD=AB=5;
(2)在Rt△ABC中,∵AB=10,BC=8,
∴AC==6,
∵D是AB中点,
∴BD=5,S△BDC=S△ADC,
∴S△BDC=S△ABC,即CD•BE=•AC•BC,
∴BE==,
在Rt△BDE中,cos∠DBE===,
即cos∠ABE的值为.
【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.
32.(2016•启东市二模)如图,已知∠MON=25°,矩形ABCD的边BC在OM上,
展开阅读全文