收藏 分销(赏)

高中数学选修22知识点总结.doc

上传人:丰**** 文档编号:10315614 上传时间:2025-05-22 格式:DOC 页数:6 大小:303.55KB
下载 相关 举报
高中数学选修22知识点总结.doc_第1页
第1页 / 共6页
高中数学选修22知识点总结.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 注1:其中是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数 函数 导函数 0 6、常见的导数和定积分运算公式:若,均可导(可积),则有: 和差的导数运算 积的导数运算 特别地: 商的导数运算 特别地: 复合函数的导数 微积分基本定理 (其中) 和差的积分运算 特别地: 积分的区间可加性 用导数求函数单调区间的步骤: ①求函数f(x)的导数 ②令>0,解不等式,得x的范围就是递增区间. ③令<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数 (3)求方程=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值 8.利用导数求函数的最值的步骤:求在上的最大值与最小值的步骤如下: ⑴求在上的极值; ⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤:分割近似代替求和取极限 (“以直代曲”的思想) 10.定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1 性质5 若,则 ①推广: ②推广: 11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0. ( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积; (2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数; (3) 当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积. 12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。 二、推理与证明知识点 13.归纳推理的定义: 从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。 归纳推理是由部分到整体,由个别到一般的推理。 14. 归纳推理的思维过程大致如图: 实验、观察 概括、推广 猜测一般性结论 15.归纳推理的特点: ①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。 ②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。 ③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。 16.类比推理的定义: 根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 17.类比推理的思维过程 观察、比较 联想、类推 推测新的结论 18.演绎推理的定义: 演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 19.演绎推理的主要形式:三段论 20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。 其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。 要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 25.反证法的一般步骤 (1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,即所求证命题正确。 26常见的“结论词”与“反义词” 原结论词 反义词 原结论词 反义词 至少有一个 一个也没有 对所有的x都成立 存在x使不成立 至多有一个 至少有两个 对任意x不成立 存在x使成立 至少有n个 至多有n-1个 p或q 且 至多有n个 至少有n+1个 p且q 或 27.反证法的思维方法:正难则反 28.归缪矛盾 (1)与已知条件矛盾: (2)与已有公理、定理、定义矛盾; (3)自相矛盾. 29.数学归纳法(只能证明与正整数有关的数学命题)的步骤 (1)证明:当n取第一个值时命题成立; (2)假设当n=k (k∈N*,且k≥n0)时命题成立,证明当n=k+1时命题也成立. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确  [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。 三、数系的扩充和复数的概念知识点 30.复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,叫实部, 叫虚部,数集叫做复数集。 规定:a=c且b=d, 强调:两复数不能比较大小,只有相等或不相等。 31.数集的关系: 32.复数的几何意义:复数与平面内的点或有序实数对一一对应。 33.复平面:根据复数相等的定义,任何一个复数,都可以由一个有序实数对唯一确定。 由于有序实数对与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。 34.求复数的模(绝对值)与复数对应的向量的模叫做复数的模(也叫绝对值)记作。由模的定义可知: 35.复数的加、减法运算及几何意义 ①复数的加、减法法则:,则。 注:复数的加、减法运算也可以按向量的加、减法来进行。 ②复数的乘法法则:。 ③复数的除法法则:其中叫做实数化因子 36.共轭复数:两复数互为共轭复数,当时,它们叫做共轭虚数。 常见的运算规律 设是1的立方虚根,则,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服